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“But I don’t want to go among mad people,” Alice remarked.
“Oh, you can’t help that,” said the Cat: “we’re all mad here. I'm mad. You're mad.”
“How do you know I'm mad?” said Alice.

“You must be,” said the Cat, “or you wouldn’t have come here.”

— Alice in Wonderland, on mutual knowledge of irrationality

*These are an extended version of previous section notes by Kevin He and Jetlir Duraj. They contain additional exercises and material from
older problem sets of Jerry Green, from the book Game Theory by Maschler, Solan, and Zamir and from the graduate book with the same title by
Myerson. Please send comments and critiques to chang_liu@ g.harvard.edu.
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Ec2010a > Game Theory Section 1: Welcome to Game Theory'

' (1) Course outline; (2) Normal form games; (3) Extensive form games; (4) Strategies in extensive form games;

' (5) Nash equilibrium and properties; (6) Optional: On the absent-minded driver

1.1 A taxonomy of games. The second half of Ec2010a is organized around several types of games, paying particular
attention to (i) relevant solution concepts in different settings, and (ii) some key economic applications belonging
to these settings. To understand the course outline, it might be helpful to first introduce some binary classification
schemes that give rise to these game types. Unfortunately, rigorous definitions of the following terminologies are not
feasible without first laying down some background, so at this point we will instead appeal to hopefully familiar games

to illustrate the classifications.

A game may have...

1 Course Outline

TF: Chang Liu (chang_liu@g.harvard.edu)

o Simultaneous moves (e.g. rock-paper-scissors) or sequential moves (e.g. checkers)

e Zero-sum payoff structure (e.g. poker) or non-zero-sum payoff structure (e.g. the usual model of prisoner’s

dilemma)

1.2 Course outline. Roughly, the course can be divided into 4 units. Each unit is focused on one type of game, studying
first its solution concepts then some important examples and applications. The relationship is summarized in Table 1.

Complete information (e.g. chess) or incomplete information (e.g. Stratego or Sanguosha)
Chance moves (e.g. Backgammon) or no chance moves (e.g. Reversi)

Finite horizon (e.g. tic-tac-toe) or infinite horizon (e.g. Gomoku on an infinite board)

Table 1: Solution concepts and economic applications.

Complete information

Incomplete information

Simultaneous move

NE, rationalizability

BNE

Sequential move

SPE

PBE, SE, SSE, ...

Complete information

Incomplete information

Simultaneous move

Nash implementation

Auctions

Sequential move

Repeated games

Signaling games

Game Tyee 1: Simultaneous move games with complete information

e Theory: Nash equilibrium (NE) and its extensions, rationalizability

e Application: Nash implementation

GaMmE Tyre 2: Simultaneous move games with incomplete information

e Theory: Bayesian Nash equilibrium (BNE)

e Application: Auctions

IFigure 1 is from Haluk Ergin’s game theory class at Berkeley. Figures for Example 13 and Example 14 are adapted from Maschler, Solan, and

Zamir (2013).
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GaMmE TyeE 3: Sequential move games with complete information

e Theory: Subgame perfect equilibrium (SPE)

e Application: Bargaining games, repeated games
GaMmE Type 4: Sequential move games with incomplete information

e Theory: Perfect Bayesian equilibrium (PBE), sequential equilibrium (SE), strategically stable equilibrium (SSE),
etc.

e Application: Reputation, signaling games

1.3 About sections. Sections are optional. We will review lecture material and work out some additional examples.
Please interrupt to ask questions. The use of the plural first-person pronoun “we” in these section notes does not
indicate royal lineage or pregnancy — rather, it suggests the notes form a conversation between the writer and the
audience.

2 Normal Form Games

2.1 Interpreting the payoff matrix. Here is the familiar payoff matrix representation of a two-player game.

Table 2: Game of assurance in normal form.

L R
T |1,1]0,0
B |00 22

Player 1 (P1) chooses a row (Top or Bottom) while player 2 (P2) chooses a column (Left or Right). Each cell contains
the payoffs to the two players when the corresponding pair of strategies is played. The first number in the cell is the
payoff to P1 while the second number is the payoff to P2. (By the way, this game is sometimes called the “game of
assurance”.)

Two important things to keep in mind:

(1) In a normal form game, players choose their strategies simultaneously. That is, P2 cannot observe which row P1
picks when choosing his column.

(2) The terminology “payoff matrix” is slightly misleading. The numbers that appear in a payoff matrix are actually
Bernoulli utilities, not monetary payoffs. To spell out this point in painstaking details: the set of possible outcomes
of the game is a four-point set X = {TL,TR, BL, BR}. Each player j has a preference %; over A(X), the set of
distributions on this set. Assume X; satisfies the von Neumann-Morgenstern (vNM) axioms of independence and
continuity. Then, running %; through the vNM representation theorem, we find that x; is represented by a utility
function Uj : A(X) — R with the functional form U](p) = pPrL " M](TL) + PrR " MJ(TR) + pPBL * M](BL) + PBR * MJ(BR)
We then enter u (T L), u;j(TR), u;(BL), u;j(BR) into the payofl matrix cells, which happen to be 1, 0, 0, 2.

In particular, in computing the expected utility of each player under a mixed strategy profile, we simply take a weighted
average of the matrix entries — there is no need to apply a “utility function” to the entries before taking the average
as they are already denominated in utils. Furthermore, it is important to remember that this kind of linearity does not
imply risk-neutrality of the players, but is rather a property of the VNM representation.”

2.2 General definition of a normal form game. The payoff matrix representation of a game is convenient, but it is
not sufficiently general. In particular, it seems unclear how we can represent games in which players have infinitely
many possible strategies, such as a Cournot duopoly, in a finite payoff matrix. We therefore require a more general
definition.

Definition 1 (Normal form game). A normal form game G = <N, (S ) jen (u j)‘,-eN> consists of:

%In fact, mixed strategies in game theory provided one of the motivations for von Neumann and Morgenstern’s work on their representation
theorem for preference over lotteries. von Neumann’s theorem on the equality between maximin and minimax values in mixed strategies for
zero-sum games assumed players choose the mixed strategy giving the highest expected value. But why should players choose between mixed
strategies based on expected payoff rather than median payoff, mean payoff minus variance of payoff, or say the 4th moment of payoff? The vNM
representation theorem rationalizes players maximizing expected payoff through a pair of conditions on their preference over lotteries.



1. A (finite) collection of players N = {1, 2, ..., n}.
2. A set of (pure) strategies S ; for each j € N.

3. A (Bernoulli) utility function u; : S — R for each j € N.

To interpret, the pure strategy set S ; is the set of actions that player j can take in the game. When each player chooses
an action simultaneously from their own pure strategy set, we get a strategy profile (sy, s, ..., 5,) € S. Players derive
payoffs by applying their respective utility functions to the strategy profile.

The payoff matrix representation of a game is a specialization of this definition. In a payoff matrix for 2 players, the
elements of S| and S, are written as the names of the rows and columns, while the values of u; and u, at different mem-
bers of S| X S, are written in the cells. If S = {s?, s} and S, = {57, s5}, then the game G = ({1,2}, (S 1, S2), (u1, u2))
can be written in a payoff matrix:

A B
) S

st wn (s, s ua(st, s5) | wi(st, s5),ua (st s5)

st | ui(sy, ) un(st, s9) | ui(sy, s9),ua(s?, s5)

Conversely, the game of assurance can be converted into the standard definition by taking N = {1,2}, S| = {T, B},
So={L,R}, u1(T,L) = 1, u;(B,R) = 2, uy(T,R) = uy(B,L) = 0, uo(T, L) = 1, us(B,R) = 2, us(T, R) = up(B,L) = 0.

The general definition allows us to write down games with infinite strategy sets. In a duopoly setting where firms
choose own production quantity, their choices are not taken from a finite set of possible quantities, but are in principle
allowed to be any positive real number. So, consider a game with §| = S, = [0, o),

ui(s1,82) = p(s1 + 52) - 51 — C(s1),

ur(s1,82) = p(s1 + 52) - 52 — C(s52),
where p(-) and C(-) are inverse demand function and cost function, respectively. Interpreting s; and s, as the quantity
choices of firm 1 and firm 2, this is Cournot competition phrased as a normal form game.

2.3 Recurring notations. The following notations are common in game theory but usually go unexplained. Let
X1,Xs,...,X, be a sequence of sets with typical elements x; € X, x, € X5, ... Then:

o X_;means [ [ <<piz; Xk Where [] denotes Cartesian product.
e X sometimes means H?=1 X;.
o x=(x))1, €Xreferstoa vectors (X1, X, ..., Xp)-
e x_jisanelementin X_j, i.e., (X1,..., Xj1, Xjul,- .., Xpn).
To see an example of these notations, suppose we are studying a three player game
G =({1,2,3},(51,82,83), (u1, uz, u3)) .

Then s_, refers to a vector containing strategies from player 1 and player 3, but not player 2. It is an element of
S'1 X S5, also written as S _,.

2.4 Mixed strategies in normal form games. A player who uses a mixed strategy in a game intentionally introduces
randomness into her play. Instead of picking a deterministic action as in a pure strategy, a mixed strategy user tosses
a coin to determine what action to play. Game theorists are interested in mixed strategies for at least two reasons: (i)
mixed strategies correspond to how humans play certain games, such as rock-paper-scissors; (ii) the space of mixed
strategies represents a convexification of the action set §; and convexity is required for many existence results.

Henceforth, denote by A(A) the set of probability distributions over a set A.

Definition 2 (Mixed strategy in normal form). Suppose G = <N, (S ) jen, () j€N> is a normal form game where each
S;is finite.* Then a mixed strategy for player j, o j, is a probability distribution over S ;. That is, o-; € A(S ;).

3Sometimes also called a profile.
4We can also define mixed strategies when the set of actions S j is infinite. However, we would need to first equip S ; with some o-algebra, then
define a mixed strategy as a probability measure on this o-algebra.



Sometimes the mixed strategy that puts probability p; on action s(ll) and probability 1 — p; on action s(lz) is written

as py s(ll) e - pl)s(lz). The “@®” notation (in lieu of “+”) is especially useful when s(ll), 5(12) are numbers, as to avoid
confusing the mixed strategy with an arithmetic expression.

Two remarks:

1. When two or more players play mixed strategies, their randomizations are assumed to be independent.

2. Technically, pure strategies also count as mixed strategies — they are simply degenerate distributions on the
action set. The term strictly mixed is usually used for a mixed strategy that puts strictly positive probability
on every action.

When a profile of mixed strategies o is played, the assumption on independent mixing, together with payoff matrix
entries being Bernoulli utilities in a vINM representation, imply that player j gets utility:

o1(s1)- - 0-11(Sn)uj(sl’ 5250y 8n)
(815525005, )ES

We will abuse notation and write u;(c;, o) for this utility, extending the domain of u; into mixed strategies. We
observe the following fact which turns out to be very useful.

Fact 3. For any fixed o_j, the map o ; — uj(0j, ;) is affine, in the sense that

uioj,o_;) = Z o j(spuj(sj, o).

5;€S

That is, the payoff to playing o-; against opponents’ mixed strategy profile o—_; is some weighted average of the |5 |
numbers (u;(s;, 0~ ;))s,es ;> Wwhere the weights are given by the probabilities that o; assigns to these different actions.

3 Extensive Form Games

3.1 Definition of an extensive form game. The rich framework of extensive form games can incorporate sequential
moves, incomplete and perhaps asymmetric information, randomization devices such as dice and coins, etc. It is
one of the most powerful modeling tools of game theory, allowing researchers to formally study a wide range of
economic interactions. Due to this richness, however, the general definition of an extensive form game is somewhat
cumbersome. Roughly speaking, an extensive form game is a tree endowed with some additional structures. These
additional structures formalize the rules of the game: the timing and order of play, the information of different players,
randomization devices relevant to the game, outcomes and players’ preferences over these outcomes, etc.

Definition 4 (Extensive form game). A (finite-horizon) extensive form game I" consists of:

1. A (finite-depth) tree with vertices V and terminal vertices Z C V.

i

A (finite) collection of players N = {1, 2, ...,n}.

A player function J : V\Z — N U {c}. Denote V; = {v : J(v) = j} for each j € N U {c}.
A set of available moves M, foreach j€ Nandv e V.

A probability distribution f(-|v) over v’s children for each v € V.

A (Bernoulli) utility function u; : Z — R for each j € N.

N o AW

An information partition 7 ; of V; for each j € N, whose elements are information sets /; € 7 ;. It is required
that M;, = M;,» whenever v,V' € I;.

The game tree captures all possible states of the game. When players reach a terminal vertex z € Z of the game tree,
the game ends and each player j receives utility u;(z). The player function J indicates who moves at each non-terminal
vertex. The move might belong to an actual player j € N, or to chance, “c”. Note that V; refers to the set of all vertices
where player j has the move. If a player j moves at vertex v, she gets to pick an element from the set M, and play
proceeds along the corresponding edge. If chance moves, then play proceeds along a random edge chosen according

to f(]v).



An information set ; of player j refers to a set of vertices that player j cannot distinguish between.’ It might be
useful to imagine the players conducting the game in a lab, mediated by a computer. At each vertex v € V\Z, the
computer finds the player J(v) who has the move and informs her that the game has arrived at the information set
I;o) 3 v. In the event that this Iy, is a singleton, player J(v) knows exactly her location in the game tree. Else, she
knows only that she is at one of the vertices in I, but she does not know for sure which one.® The requirement
that two vertices in the same information set must have the same sets of moves is to prevent a player from gaining
additional information by simply examining the set of moves available to her, which would defeat the idea that the
player supposedly cannot distinguish between any of the vertices in the same information set. For convenience, we
also write M, I for the common move set for all vertices v € ;.

There are two conventions for indicating an information set /; in a game tree diagrams. Either all of the vertices in /;
are connected using dashed lines, or all of the vertices are encircled in an oval.

Example 5. Figure 1 illustrates all the pieces of the general definition of an extensive form game.

2,1
(5,-2) 0.2)
(3.0

2,0

(2,0) 1,2)

Chance move distributions: f(a|(])) = f(b|(])) = 0.5.
Information partitions: 7| ={ @, (l,a) }, I» ={ (), {(,b),(m)} }.

Figure 1: An extensive form game with incomplete information and chance moves.

For convenience, let’s name each vertex with the sequence of moves leading to it (and name the root as @). The set of
playersis N = {1, 2}. The player function J(v) is shown on each v € V\Z in Figure 1, while the payoff pair (u(z), u2(z))
is shown on each z € Z. The set of moves M, at vertex v is shown on the corresponding edges. Player 1 moves at two
vertices, V| = { @, (l,a) }. Her information partition contains only singleton sets, meaning she always knows where
in the game tree she is when called upon to move. Player 2 moves at three vertices, V, = { (r), (I,b), (m) }. However,
player 2 cannot distinguish between (m) and (I, ), though he can distinguish () from the other two vertices. As such,
his information partition contains two information sets, one containing just (r), the other containing the two vertices
(m) and (I, b). As required by the definition, My ) = M>qp) = {x,Y}, so that player 2 cannot figure out whether he is
at (m) or (I, b) by looking at the set of available moves. ¢

The definition of extensive form games given above, allows us to formally characterize games of perfect information
as well.

Definition 6 (Game of perfect information). An extensive form game is called a game of perfect information if all
the information sets of all players contain one node.

3.2 Using information sets to convert a normal form game into extensive form. Every finite normal form game G =

<N, (S (uj);?:l> may be converted into an extensive form game of incomplete information with 1+, _, [T}, IS I

5The use of an information partition to model a player’s knowledge predates extensive form games with incomplete information. Such models
usually specify a set of states of the world, €, then some partition 7; on Q. When a state of the world w € Q realizes, player j is told the
information set I; € I; containing w, but not the exact identity of w. So then, finer partitions correspond to better information. To take an
example, suppose 3 people are standing facing the same direction. An observer places a hat of one of two colors (say color 0 and color 1) on
each of the 3 people. These 3 people cannot see their own hat color or the hat color of those standing behind them. Then the states of the world
are Q = {000,001,010,011, 100,101,110, 111}. The person in the front of the line has no information, so her information partition contains

just one information set with all the states, 7; = { {000,001,010,011, 100, 101,110, 111} }. The second person in line sees only the hat color
of the first person, so that 7, = { {000,010, 100, 110}, {001,011, 101,111} }. Finally, the last person sees the hats of persons 1 and 2, so that
I3 ={{000, 100}, {001,101}, {010,110}, {011,111} }. In the context extensive form games, one might think of V; as the relevant “states of the

world” for j’s decision-making and the fineness of her information partition 7 ; reflects the extent to which she can distinguish between these states.
6She might, however, be able to form a belief as to the likelihood of being at each vertex in I J(v)> based on her knowledge of other players’
strategies and the chance move distributions.



vertices. Construct a game tree with n + 1 levels, so that all the vertices at level m belong to a single information set
for player m, for 1 < m < n. Level 1 contains the root. The root has |S || children, corresponding to the actions in §;.
These children form the level 2 vertices. Each of these level 2 vertices has |S,| children, corresponding to the actions
in S, and so forth. Each terminal vertex z in level n + 1 corresponds to some action profile (s‘"l' s sg, ..., §5) in the normal
form game G and is assigned utility u;(s], 55, ..., s3,) for player j in the extensive form game. Figure 2 illustrates such

a conversion using the game of assurance discussed earlier.

1

(1,1 0,0) 0,0) 2,2)

Figure 2: Game of assurance in extensive form.

4 Strategies in Extensive Form Games

4.1 Pure strategy in extensive form games. How would you write a program to play an extensive form game as player
Jj? Whenever it is player j’s turn, the program should take the information set as an input and return one of the
feasible moves as an output. As the programmer does not a priori know the strategies that other players will use,
the program must encode a complete contingency plan for playing the game so that it returns a legal move at every
vertex of the game tree where j might be called upon to play. This motivates the definition of a pure strategy in an
extensive form game.

Definition 7 (Pure strategy). In an extensive form game, a pure strategy for player j is a function s; : 1; —
Uler, My, so that s;(I;) € M, for each I; € I';. Write S ; for the set of all pure strategies of player j.

That is, a pure strategy for player j returns a legal move at every information set of j.

Example 8. In Figure 1, one of the strategies of P1 is 51(@) = m, s1(l,a) = d. Even though playing m at the root
means the vertex (/, a) will never be reached, P1’s strategy must still specify what she would have done at (/, a). This
is because some solution concepts we will study later in the course require us to examine parts of the game tree which
are unreached when the game is played. Intuitively, this is necessary because the optimality of an action for a player
at some information set may depend on what she/he and her/his opponents would have played on an information set
which would be reached only if the player chooses differently than the strategy under consideration.

One of the strategies of P2 is s, ({(/, b), (m)}) = y, s2(r) = z. In every pure strategy P2 must play the same action at both
(I,b) and (m), as pure strategies are functions of information sets, not individual vertices. In total, P1 has 6 different
pure strategies in the game and P2 has 6 different pure strategies. )

4.2 Two definitions of randomization. There are at least two natural notions of “randomizing” in an extensive form
game: (i) Player j could enumerate the set of all possible pure strategies, S ;, then choose an element of S ; at random;
(ii) Player j could pick a randomization over M; for each of her information sets /; € I;. These two notions of
randomization lead to two different classes of strategies that incorporate stochastic elements:

Definition 9 (Mixed strategy). A mixed strategy for player j is an element o; € A(S ;).

Definition 10 (Behavioral strategy). A behavioral strategy for player j is a collection of distributions {b; };.c7,, where
bi; € A(My)).

Strictly speaking, mixed strategies and behavioral strategies form two distinct classes of objects. We may, however,
talk about the equivalence between a mixed strategy and a behavioral strategy in the following way:

Definition 11. A mixed strategy o; and a behavioral strategy {b;} are equivalent if they generate the same distribution
over terminal vertices regardless of the strategies used by opponents, which may be mixed or behavioral.



Note that in this definition for both the behavioral and the mixed case, opponents of j are assumed to play indepen-
dently of each other.

Example 12. In Figure 1, a behavioral strategy for P1 is: b (I) = 0.5, b,(m) = 0, b,(r) = 0.5, b?l,a)(t) =0.7, b?l,a)(d) =
0.3. That is, P1 decides that she will play m and r each with 50% probability at the root of the game. If she ever
reaches the vertex (/, a), she will play ¢ with 70% probability, d with 30% probability. But now, consider the following
4 pure strategies: s\"(@) = I, s""(L,a) = 1; sP@) = 1, s (L, a) = d; sV (@) = 1, sV W) = 1; sP(@) = 1, VU a) = d
and construct the mixed strategy o™ so that o (s(ll)) = 0.35,0" (s(lz)) =0.15,0" (s(13)) = 0.35,0" (s(14)) = 0.15. Then
the behavioral strategy b* is equivalent to the mixed strategy o™. ¢

It is often “nicer” to work with behavioral strategies than mixed strategies, for at least two reasons. One, behavioral
strategies are easier to write down and usually involve fewer parameters than mixed strategies. Two, it feels more
natural for a player to randomize at each decision node than to choose a “grand plan” at the start of the game. In
general, however, neither the set of mixed strategies nor the set of behavioral strategies is a “subset” of the other, as
we now demonstrate.

Example 13 (A mixed strategy without an equivalent behavioral strategy). Consider an absent-minded city driver
who must make turns at two consecutive intersections. Upon encountering the second intersection, however, she does
not remember whether she turned left (7') or right (B) at the first intersection. The mixed strategy o-; putting probability
50% on each of the two pure strategies 777, and BB, generates the outcome O; 50% of the time and the outcome
04 50% of the time. However, this outcome distribution cannot be obtained using any behavioral strategy. That is,
if the driver chooses some probability of turning left at the first intersection and some probability of turning left at
the second intersection, and furthermore these two randomizations are independent, then she can never generate the
outcome distribution of 50% 01, 50% O,.

T> Oy
T,

B, 03

T, 0,
B

B, 0,

Figure 3: Absent-minded city driver.

¢

Example 14 (A behavioral strategy without an equivalent mixed strategy). Consider an absent-minded highway
driver who wants to take the second highway exit. Starting from the root of the tree, he wants to keep left (L) at the
first highway exit but keep right (R) at the second highway exit. Upon encountering each highway exit, however, he
does not remember if he has already encountered an exit before. The driver has only two pure strategies: always L or
always R. It is easy to see no mixed strategy can ever achieve the outcome O,. However, the behavioral strategy of
taking L and R each with 50% probability each time he arrives at his information set gets the outcome O, with 25%
probability.

Figure 4: Absent-minded highway driver.



These two examples are “pathological” in the sense that the drivers “forget” some information that they knew be-
fore. The city driver forgets what action she took at the previous information set. The highway driver forgets what
information sets he has encountered. The definition of perfect recall rules out these two pathologies.

Definition 15 (Perfect recall). An extensive form game has perfect recall if for each player j and information set /;,
whenever v,V € I}, the two paths leading from the root to v and V" pass through the same sequence of information sets
of player j, and player j takes the same actions at these information sets.

To put it another way, a game of perfect recall makes it impossible for a player who can remember all the information
about the path of play she gathered in previous stages (i.e., never forgets anything) to find out in which node of any
non-singleton information set she is located.

In the examples above: the city driver game fails perfect recall since taking two different actions from the root vertex
lead to two vertices in the same information set. The highway driver game fails perfect recall since vertices x; and x,
are in the same information set, yet the path from root to x; is empty while the path from root to x, passes through one
information set.

Kuhn’s theorem states that in a game with perfect recall, it is without loss to analyze only behavioral strategies. Its
proof is beyond the scope of this course.

Theorem 16 (Kuhn, 1953). In a finite extensive game with perfect recall, (i) every mixed strategy has an equivalent
behavioral strategy, and (ii) every behavioral strategy has an equivalent mixed strategy.

5 Nash Equilibrium and Properties

5.1 What does it mean to “solve” a game? A detour into combinatorial game theory. Why are economists interested
in Nash equilibrium, or solution concepts in general? As a slight aside, you may want to know that there actually exist
two areas of research that go by the name of “game theory”. The full names of these two areas are combinatorial
game theory and equilibrium game theory. Despite the similarity in name, these two versions of game theory have
quite different research agendas. The most salient difference is that combinatorial game theory studies well-known
board games like chess where there exists (theoretically) a “winning strategy” for one player. Combinatorial game
theorists aim to find these winning strategies, thereby solving the game. On the other hand, no “winning strategies”
(usually called dominant strategies in our lingo) exist for most games studied by equilibrium game theorists’. In the
game of assurance, for example, due to the simultaneous move condition, there is no one strategy that is optimal for
P1 regardless of how P2 plays, in contrast to the existence of such optimal strategies in, say, tic-tac-toe.

If a game has a dominant strategy for one of the players, then it is straight-forward to predict its outcome under optimal
play. The player with the dominant strategy will employ this strategy and the other player will do the best they can
to minimize their losses. However, predicting outcome in a game without dominant strategies requires the analyst to
make assumptions. These assumptions are usually called equilibrium assumptions and give equilibrium game theory
its name. One of the most common equilibrium assumptions in normal form games with complete information is the
Nash equilibrium, which we now study.

5.2 Definition of Nash equilibrium. A Nash equilibrium® is a strategy profile where no player can improve upon her
own payoff through a unilateral deviation, taking as given the actions of others. This leads to the usual definition of
pure and mixed strategy Nash equilibria.

Definition 17 (Pure strategy Nash equilibrium). In a normal form game G = <N, (S ) jen, (u)) jeN>, a pure strategy
Nash equilibrium is a pure strategy profile s* such that for every player j, u j(sj., st pJzu j(s;., st D) for all s;. €S;.

Definition 18 (Mixed strategy Nash equilibrium). In a normal form game G = <N, (S j)jen, (u)) jeN>, a mixed strategy
Nash equilibrium is a mixed strategy profile o such that for every player j, u 00 ) 2 u j(s;, ol for all s; €S

In the definition of a mixed Nash equilibrium, we required no profitable unilateral deviation to any pure strategy, s;. It
would be equivalent to require no profitable unilateral deviation to any mixed strategy, due to the observation in Fact
3. If there is some profitable mixed strategy deviation o-} from a strategy profile (0';, load j), then it must be the case that
for at least one s;. € S with U;(S;) > 0, uj(s;., o-’jj) > Mj(O';, o-ij).

"The one-shot prisoner’s dilemma is an exception here.
8John Nash called this equilibrium concept “equilibrium point” (Nash, 1950, 1951) but later researchers referred to it as “Nash equilibrium”.
We will see a similar situation later.



Example 19 (Game of assurance). Consider the game of assurance,

L R
T|11|0,0
B |00 22

We readily verify that both (7', L) and (B, R) are pure strategy Nash equilibria. Note one of these two Nash equilibria
Pareto dominates the other. In general, Nash equilibria need not be Pareto efficient. This is because the definition of
NE only accounts for the absence of profitable unilateral deviations. Indeed, starting from the strategy profile (7, L),
if P1 and P2 can contract on simultaneously changing their strategies, then they would both be better off. However,
these sorts of simultaneous deviations by a “coalition” are not allowed.

But wait, there’s more! Suppose P1 plays %T @ %B, and P2 plays %L @ %R. This strategy profile is a mixed NE. The
reasoning is as follows. When P1 is playing %T @ %B, P2 gets an expected payoff of % from playing L and an expected
payoft of % from playing R. Therefore, P2 has no profitable unilateral deviation because every strategy he could play,
pure or mixed, would give the same payoff of % Similarly, P2’s mixed strategy %L ® %R means P1 gets an expected
payoff of % whether she plays T or B, so P1 does not have a profitable deviation either. ¢

5.3 Nash equilibrium as a fixed-point of the best response correspondence. Nash equilibrium embodies the idea of
stability. To make this point clear, it is useful to introduce an equivalent view of the Nash equilibrium through the lens
of best response correspondences.

Definition 20 (Best response correspondence). The individual pure best response correspondence for player j is
BR;:S_; 3 S’ where
BR(s-;) = arg max u;(s’, s-).
‘Y}ES j

The pure best response correspondence is a vector of correspondences BR : S =3 S where

BR(s) = (BRj(5-))) jen-
Analogously, the individual mixed best response correspondence for player j is BR it [ kzj A(S 1) 3 A(S ) where

BR(0 ) = argmax u;(0}, o).
7 EA(S )

The mixed best response correspondence is a vector of correspondences BR : [] jen A(S j) 33 []jen A(S j) where
BR(c) = (BR(0_))) jen-

To interpret, the individual best response correspondences return the maximizer(s) of each player’s utility function
when opponents plays some known strategy profile. Depending on others’ strategies, the player may have multiple
maximizers, all yielding the same utility. As a result, we must allow the best responses to be correspondences rather
than functions. Then, it is easy to see that:

Proposition 21. A pure strategy profile is a pure strategy Nash equilibrium if and only if it is a fixed point of BR. A
mixed strategy profile is a mixed strategy Nash equilibrium if and only if it is a fixed point of BR.

Fixed points of the best response correspondences reflect stability of NE strategy profiles, in the sense that even if
player i knew what others were going to play, she still would not find it beneficial to change her actions. This rules
out cases where a player plays in a certain way only because she held the wrong expectations about other players’
strategies. We might expect such outcomes to arise initially when inexperienced players participate in the game, but
we would also expect such outcomes to vanish as players learn to adjust their strategies to maximize their payoffs over
time. That is to say, we expect non-NE strategy profiles to be unstable.

5.4 Some properties of Nash equilibria. Here are several important properties of NE. The first two are useful when
computing NE:
Property 1: The indifference principle in mixed strategy Nash equilibria.

In Example 19, we saw that each action that one player plays with strictly positive probability yields the same expected
payoft against the mixed strategy profile of the opponent. Turns out this is a general phenomenon.

9The notation f : A =3 Bis equivalent to f : A — 25,



Proposition 22. If o™ is a Nash equilibrium, then for s; and s;. such that 0';(5‘ ) > 0 and a'j.(s;.) > 0, we have
u;(sj, O'ij) = uj(s;, O"jj).
Proof. It suffices to show that u;(s;, 0" ;) = u;(07}, 0 ) for any s; such that o%(s;) > 0. Suppose that, to the contrary,
we may find s; € §; so that o-j(sj) > 0 but u;(s;, O'ij) * uj(crj, o'ij).
1. Ifu;(s;, o-fj) >u j(O'j., o-’jj), we contradict the optimality of O'j. in the maximization problem arg MaX s ) U j(O’}, o)),
for we should have just picked 6 ; = s, the degenerate distribution on pure strategy s ;.

2. If u(s, o-*_j) < uj(aj., a"jj), we enumerate S ; = {sy), ey s?)} and use the Fact 3 to expand:
.
Mj(O'j,O'_j) = Z(Tj(s(j )) . uj(s(j ),O'_j .
k=1
The term u;(s;, o-ij) appears in the summation on the right with a strictly positive weight, so if u;(s;, a-’jj) <
u j((rj, o-‘ij) then there must exist another s} € §; such that u j(s;., o-fj) > u j(O';, 0'*_j). But now we have again
contradicted the fact that oy is a best mixed response to o i

This completes the proof. O

Property 2: In each Nash equilibrium, no player puts positive probability on a strictly dominated strategy.

Definition 23 (Strictly dominated). A pure strategy s; € S ; of player j is strictly dominated if there exists a (mixed)
strategy o ; € A(S ;) such that for every s_; € S_;,

Mj(O'j, S_j) > Ltj(Sj, S_j).
It turns out that recognizing strictly dominated strategies can simplify the analysis of the Nash equilibria of a game,
since no player would ever employ them in a Nash equilibrium strategy.

Proposition 24. If o* is a Nash equilibrium and s; is strictly dominated, then o-j.(s ) =0.

Proof. Suppose that s; is strictly dominated by o ;. This implies, in particular, that
uj(oj, o) > uj(sj, o).
Since o} is a best response to o* i in the Nash equilibrium, it follows that
uj(c, o) 2 uj(oj, 0l ) > ui(sj ol )).

The indifference principle then forces a;f(s ;) to be 0. m}

As a corollary, iterated elimination of strictly dominated strategies (IESDS)'” does not change the set of NE. In a
game G, we can remove some or all of each player’s strictly dominated strategies to arrive at a new game G», which
will have the same set of NE as GV Furthermore, this procedure can be repeated, removing some of each player’s
strictly dominated strategies in G to arrive at GY*1. All of the games G, G®,G®, ... will have the same set of NE,
but computing NE of the later games is probably easier than computing NE of the original game G,

Next we turn to the mathematical properties of the set of Nash equilibria:
Property 3: The set of Nash equilibria of a finite game is closed, but in general not convex.
The set of Nash equilibria of a finite game is a subset of the product space of strategy profiles [ jey A(S ).

e To see that it is a closed subset, consider a sequence of Nash equilibria of the game G, {o™}, that converges to
a strategy profile o* as m — co. We then have

ui (o, 0") 2 uj(oj ™), VieN, Vo;eAS).

Note that the payoff functions are continuous in their arguments. We can pass to the limit to m — oo to show

Mj(O'j-,O'ij) > uj(O'j,o{j), VjeN, VYojeAS).

This is just the definition of o* being a Nash equilibrium profile!

10Next section will focus more on TESDS and its properties. Some comments on the relation of the property of never best response to the
property of being strictly dominated: These two concepts are equivalent for two-player games. For games with more than two players, they are in
general not equivalent, under the usual assumption that opponents of a player cannot correlate their strategies.
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o To give a counterexample to the set of Nash equilibria being convex, consider (again) the game of assurance.

L R
T |1,1]0,0
B |00 22

(T, L) and (B, R) are Nash equilibria, but (%T <] %B, %L @ %R) is not, as it violates the indifference principle. For
instance, when P1 plays %T [ %B, P2 would deviate to playing R with probability one.

Finally, we turn to a particular class of games:
Definition 25 (Symmetric game). G = (N, (S ) jen (1) j€N> is a symmetric game if

1. Each player has the same set of strategies: S; = Sy forall j,k € N.

2. The payoff functions satisfy
Un(j)(S1s v Sp) = Uj(Sx(1)s - - - > Sam))

for any permutation 7.

Examples of symmetric games are Bertrand duopoly or Cournot duopoly with identical costs, the prisoner’s dilemma,
etc.

Property 4: Every finite symmetric game has a symmetric mixed strategy Nash equilibrium (Nash, 1951).

One can adapt the proof of Nash’s existence theorem to show that every finite symmetric game has a symmetric mixed
strategy Nash equilibrium: an equilibrium o* satisfying ol =0y forall j ke N.

This fact can come in handy when solving games. Moreover, the assumption of symmetric play is natural in the sense
that players should be interchangeable in symmetric games (i.e., their identity doesn’t matter for the game play).

6 Optional: On the Absent-Minded Driver

The two types of analyses presented here are intuitively nearer to the concepts of Bayesian Nash equilibrium and
correlated equilibrium that we will cover in later parts of the lecture. They are based on Aumann, Hart, and Perry
(1997).

Consider the absent-minded driver game we saw in the lecture:

start
exit
X 0
|
|
| continue
| .
! exit
Y 4
continue
1

Figure 5: The absent-minded driver game.



We calculated in the lecture that the optimal behavioral strategy puts probability of p = % on ‘“continue”. Here, in
the first part, we consider another approach to the same problem, which takes beliefs of the driver about her location
within the info set into account. In the second part, we show that with the help of simple correlating devices, it is
possible to achieve an even higher payoff than with mixed or behavioral strategies.

A Bayesian perspective. For the following analysis we assume:

1. The driver makes a decision at each intersection through which he passes. Moreover, at any intersection, she
can determine the action only there (she cannot determine the action at the other intersection).

2. Since she can’t distinguish between intersections, whatever reasoning obtained at one intersection must be
obtained also at the other, and she is aware of this.

This implies the following:

e The optimal decision is the same at both intersections; it is pinned down by the probability of choosing “con-
tinue” at each intersection. Call it p*.

e Therefore, at each intersection, the driver believes that p* is chosen at the other intersection.

e The driver has a belief over her location within her information set. At each intersection, the driver optimizes
her decision given her beliefs. Therefore, choosing p = p* at the current intersection she is located, must be
optimal given the belief that p* is chosen at the other intersection. Moreover, her belief must be derived from
the strategy she chooses.

By the principle of indifference'' in Bayesian statistics, without any information about the strategy chosen, the prob-
ability of being at X will be % Denote a(p*) the belief the driver has about being at the intersection X, given her
strategy of choosing p* at the other intersection. The reasoning above and Bayes rule implies, that

1
2
+

a(p’) = -
p

=
=

Given her beliefs about the behavior at the other node, the payoff of choosing p at the current node can be computed
as

_ @-6pp+4p

h(p,p") = a1 =p)-0+p(l=p*)-4+pp"- 11+ 1 -a(p)NId - p)-4+p-1] 17 p

p must be chosen optimally, given the belief p*. Moreover, p must be equal to p*, since the agent doesn’t distinguish
between the nodes. That is, p* must fulfill
p* € argmax h(p, p*).

pel0,1]
The maximizing p for fixed p* satisfies
e w2
0 if p* > 2
p = {any value in [0, 1] if p* = %
e w2
1 lfp < 3

This shows that the solution is unique and equal to p* = %, the same as for the optimal behavioral strategy! Recall that
the payoff of the optimal behavioral strategy is %.

The handkerchief solution. Assume the driver has a handkerchief in her pocket. Whenever she goes through an
intersection, if there was no knot, she ties a knot in the handkerchief; if there was a knot, she unties it.

Assume that at the beginning, it is equally probable that the handkerchief had a knot or not. Assume that the driver is
absent-minded in the sense that she cannot remember which was the case. Thus, at each one of the two intersections,
the probability of having a knot in the handkerchief is % Therefore, seeing a knot or not at each intersection does not
reveal any information about the location of the intersection.

"'The principle of indifference states that in the absence of any relevant evidence, agents should distribute their credence equally among all the
possible outcomes under consideration.
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Consider the following strategy for the driver: exit if there is a knot, continue if there is not. The payoff of this simple
strategy is % 0+ % -4 = 2: with probability % the handkerchief had a knot in the first place, so that the driver exits and
the payoff is 0; with probability % the handkerchief had no knot so that the driver continues and ties a knot, and at the

next node, seeing the knot the driver exits so that the payoff realized is 4.

Note that the path of play induced by this strategy can not be replicated using a behavioral strategy: the handkerchief
allows the driver to avoid ever reaching the last node with payoff 1. Note also that 2 > %, the payoff from the best
behavioral strategy. The handkerchief has served as a coordination device between the forgetful selves in the different

nodes and has achieved a higher payoff than the best behavioral strategy!

13



Ec2010a >~ Game Theory Section 2: Nash Equilibrium and Correlated Equilibrium 10/31/2021

(1) Solving for Nash equilibria; (2) Correlated equilibrium; (3) Characterization of correlated equilibria

TF: Chang Liu (chang_liu@g.harvard.edu)

1 Solving for Nash Equilibria

The following steps may be helpful in solving for Nash equilibria of two-player games.

1. Use iterated elimination of strictly dominated strategies to simplify the problem.

2. Find all the pure strategy Nash equilibria by considering all cells in the payoff matrix.

3. Look for mixed strategy Nash equilibria where one player is playing a pure strategy while the other is mixing.
4. Look for mixed strategy Nash equilibria where both players are mixing.

Example 26 (December 2013 Final Exam). Find all Nash equilibria, pure and mixed, in the following payoff matrix.

L R Y
T 2,2 -1,2 1 0,0
-1,-1] 0,1 | 1,-2
X 0,0 -2,11 0,2

=

Solution:
Step 1: Strategy X for P1 is strictly dominated by 17 @ $B. Indeed, u;(X,L) = 0 < 0.5 = u (%T@ 1B, L),

ui(X,R) = -2 < -0.5 = uy (%T <] %B,R), and u;(X,Y) =0<0.5 =u (%T @ %B, Y). But having eliminated X for P1,
strategy Y for P2 is strictly dominated by R: u>(T,Y) = 0 < 2 = up(T,R), u»(B,Y) = =2 < 1 = uy(B, R). Hence we
can restrict attention to the smaller, 2 X 2 game in the upper left corner.

Step 2: (7, L) is a pure Nash equilibrium as no player has a profitable unilateral deviation. (The deviation L — R
does not strictly improve the payoff of P2, so it doesn’t break the equilibrium.) At (7, R), P1 deviates T — B, so it
is not a pure strategy Nash equilibrium. At (B, L), P2 deviates L — R. At (B, R), no player has a profitable unilateral
deviation, so it is a pure strategy Nash equilibrium. In summary, the game has two pure strategy Nash equilibria: (T, L)
and (B, R).

Step 3: Now we look for mixed Nash equilibria where one player is using a pure strategy while the other is using a
strictly mixed strategy. As discussed before, if a player strictly mixes between two pure strategies, then she must be
getting the same payoff from playing either of these two pure strategies.

Using this indifference principle, we quickly realize it cannot be the case that P2 is playing a pure strategy while P1
strictly mixes. Indeed, if P2 plays L then u (7T, L) > u;(B, L). If P2 plays R then u;(B,R) > u;(T, R).

Similarly, if P1 is playing B, then the indifference condition cannot be sustained for P2 since uy(R, B) > uy(L, B).

Now suppose P1 plays T. Then uy(T, L) = ux(T, R). This indifference condition ensures that any strictly mixed strategy
of P2 pL @ (1 — p)R for p € (0, 1) is a mixed best response to P1’s strategy. However, to ensure this is a mixed Nash
equilibrium, we must also make check P1 does not have any profitable unilateral deviation. This requires:

u(T,pL® (1 — p)R) > ui(B, pL® (1 — p)R).

That is to say,
1
2p+(-H-Ad-p=z=hH-p+0-0d-p & p2 T
Therefore, (T, pL & (1 — p)R) is a mixed Nash equilibrium where P2 strictly mixes when p € [i, 1).

Step 4: There are no mixed Nash equilibria where both players are strictly mixing. To see this, notice that if o} (B) > 0,
then
u (o, L) =2-(1-0o(B) + (=) - (o](B)) <2- (1 = (B) + (1) - (01(B)) = ua(077, R).
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So it cannot be the case that P2 is also strictly mixing, since P2 is not indifferent between L and R.

To sum up, the game has two pure Nash equilibria, (7, L) and (B, R), as well as infinitely many mixed Nash equilibria,
(T, pL® (1 = p)R) for p € [, 1). ¢

Sometimes, iterated elimination of strictly dominated strategy simplifies the game so much that the solution is imme-
diate after this process. The following example illustrates.

Example 27 (Guess two-thirds the average, sometimes also called the beauty contest game'?). Consider a game of 2

e A2 . .
players GV where S| = S, = [0, 100], u;(s;, 5_;) = — (si - % . ”%) . That is, each player wants to play an action as

close to two-thirds the average of the two actions as possible.

We claim that for each player i, every action in (50, 100] is strictly dominated by the action 50. To see this, for any
opponent action s_; € [0, 100], we have % . 50% < 50, so the guess 50 is already too high. At the same time, playing
any s; > 50 exacerbates the error relative to playing 50,

2 2
Thus, — (si - % . %) < - (50 - % . %) for all s; € (50, 100] and we have the claimed strict dominance.

This means we may delete the set of actions (50, 100] from each S; to arrive at a new game G® where each player is
restricted to using only [0, 50]. The game G® will have the same set of Nash equilibria as the original game. But the
same logic may be applied again to show that in G, for each player, any action in (25, 50] is strictly dominated by
the action 25. We may continue in this way iteratively to arrive at a sequence of games (G®);51, so that in the game

k
G&+D, player i’s action set is [0, (%) . 100]. All of the games G, G? G, ... have the same Nash equilibria. This
means any NE of G must involve each player playing an action in
) 1 k
N {o, (5) : 100] = {0}.
k=1

Hence, (0, 0) is the unique NE. ¢

Example 28. Consider the following three-player game, where the first player chooses rows, the second chooses
columns and the third chooses the matrix.

X L R Y L R
T 11,1013 T 1]3,01)| 110
B | 1,30 1,0,1 B 01,1000

We claim that there is a unique Nash equilibrium and it is in pure strategies: (7, L, X).
Step 1: There is a unique pure strategy Nash equilibrium, (7, L, X).

To check that (7, L, X) is NE: if players 1 and 2 play (7, L), then player 3 is indifferent, so she might as well choose
X. Note also, that (7, L) is NE of the two-player game created by taking matrix X and deleting all payoffs of player 3.

In this restricted game, there is also NE where players 1 and 2 play (B, L), but then player 3 would like to switch matrix
to Y. If we restrict matrix Y to the payoffs of players 1 and 2 only, we see that there is only one pure strategy NE in
the two-player induced game: (7', R), but then player 3 would like to X.

In all, there is only one pure strategy Nash equilibrium, (7, L, X).

Step 2: There are no Nash equilibria, where two players play pure strategies and the remaining player strictly mixes.

12The name “beauty contest game” comes from Keynes. He described the action of rational agents in a market using an analogy based on a
fictional newspaper contest, in which entrants are asked to choose the six most attractive faces from a hundred photographs. Those who picked
the most popular faces are then eligible for a prize. A naive strategy would be to choose the face that, in the opinion of the entrant, is the most
handsome. A more sophisticated contest entrant, wishing to maximize the chances of winning a prize, would think about what the majority
perception of attractive is, and then make a selection based on some inference from their knowledge of public perceptions. This can be carried one
step further to take into account the fact that other entrants would each have their own opinion of what public perceptions are. Thus the strategy
can be extended to the next order and the next and so on, at each level attempting to predict the eventual outcome of the process based on the
reasoning of other rational agents. Here, we consider the more explicit scenario that helps to convey the notion of the contest as a convergence to
Nash equilibrium, due to Ledoux (1981).
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1. Player 3 strictly mixes. The indifference principle implies that players 1 and 2 play (7, L). But then player 2
would deviate to R, as she can guarantee payoff 1 even when Y is played (this happens with positive probability).
Contradiction!

2. Player 2 strictly mixes. The indifference principle implies that players 1 and 3 play (7, X). But then player 1
would deviate to B, as she can guarantee payoff 1 even when R is played (this happens with positive probability).
Contradiction!

3. Player 1 strictly mixes. The indifference principle implies that players 2 and 3 play (L, X). But then player 3
would deviate to Y, as she can guarantee payoff 1 even when B is played (this happens with positive probability).
Contradiction!

Step 3: There are no Nash equilibria, where one player plays pure strategy and the remaining players strictly mix.

1. Player 1 plays a pure strategy. If T is played, player 3 is willing to strictly mix only if player 2 plays L with
probability one; otherwise, she would choose X with probability one, contradiction! If B is played, player 2
would choose L with probability one, contradiction!

2. Player 2 plays a pure strategy. If L is played, player 1 is willing to strictly mix only if player 3 plays X with
probability one; otherwise, she would choose T with probability one, contradiction! If R is played, player 3
would choose X with probability one, contradiction!

3. Player 3 plays a pure strategy. If X is played, player 1 is willing to strictly mix only if player 2 plays L with
probability one; otherwise, she would choose B with probability one, contradiction! If Y is played, player 1
would choose T with probability one, contradiction!

Step 4: There are no Nash equilibria, where all players strictly mix."?
Let (p, g, r) be the probabilities with which, respectively, player 1 plays 7', player 2 plays L and player 3 plays X.

The indifference condition for player 1 is
1-gr+0-1-q@r+3g1-nN+1-1-¢gd-r=1-r+0-(1-r) = 3qd-r=>10-9Q2r-1).
Similarly, the indifference condition for player 2 and 3 can be written as, respectively,
3r(1=p)=10-nC2p-1) and 3p(l-gq)=1-p)2-1).

In particular, these three indifference conditions imply that p, g, r > % Now multiply the three equations side by side.
We get
27pgr = (2p - 1)2q - 1)2r-1).
RHS is smaller than 1, but LHS is greater than %, contradiction!
To sum up, there is a unique Nash equilibrium and it is in pure strategies: (7, L, X). ¢

2 Correlated Equilibrium

Let’s begin with the definition of a correlated equilibrium in a normal form game.

Definition 29 (Correlated equilibrium). In a normal form game G = <N, (S j)jen, (u)) jeN>, a correlated equilibrium
(Q, p, s*) consists of:

1. A (finite) set of signals Q; for each j € N. Q = [ ;e Q.
2. A (joint) distribution p € A(Q), so that the marginal distributions p(w;) > 0 for each w; € Q;.

3. A (signal-dependent) strategy sj. : Q; — §; for each j € N such that for every j€ N, w; € Q;, s;. €S},

Z plo-jlwpu;(si(w;), s~ (w-j)) = Z plo_jlwpu(s], s-(w-))).

w_j€Q_; w_j€Q_;

3There are several ways to do this step, this is just one of them.
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A correlated equilibrium envisions the following situation. At the start of the game, an n-dimensional vector of signals
w realizes according to the distribution p. Player j observes only the j-th dimension of the signal, w;, and plays an
action s7(w;) as a function of the signal she sees. Whereas a pure strategy Nash equilibrium has each player playing
one actlon and requires that no player has a profitable unilateral deviation, in a correlated equilibrium each player may
take different actions depending on her signal. Correlated equilibrium requires that no player can strictly improve
her expected payoffs after seeing any of her signals. More precisely, seeing the signal w; leads her to have some belief
over the signals that others must have seen, formalized by the conditional distribution p(-|w;) € A(Q_;). Since she
knows how these opponent signals translate into opponent actions through s’ij, she can compute the expected payoffs
of taking different actions after seeing signal w;. She finds it optimal to play the action s; (w)) instead of deviating to
any other s} € §; after seeing signal w;.

We make four remarks about correlated equilibria.

1. The signal space and its associated joint distribution, (€2, p), are not part of the game G, but part of the equilib-
rium. That is, a correlated equilibrium constructs an information structure under which a particular outcome
can arise.

2. There is no institution compelling player j to play the action sj.(w ), but j finds it optimal to do so after seeing
the signal w;. It might be helpful to think of the traffic lights as an analogy for a correlated equilibrium. The
light color that a player sees as she arrives at the intersection is her signal and imagine a world where there is
no traffic police or cameras enforcing traffic rules. Each driver would nevertheless still find it optimal to stop
when she sees a red light, because she infers that her seeing the red light signal must mean the driver on the
intersecting street received the green light signal, and further the other driver is playing the strategy of going
through the intersection if he sees a green light. Even though the red light (w;) merely recommends an action
(s’; (wj)), j finds it optimal to obey this recommendation given how others are acting on their own signals.

3. A Nash equilibrium is always a correlated equilibrium. Indeed, if o* is a Nash equilibrium in a normal form
game G = <N, (S j)jen, (uj)j€N>, construct signal spaces ; = S ;, define the distribution p € A(Q) by

P(St,. s S)) =01 (s1) -0 (8n),

and consider the signal-dependent strategies s] Qi — §;, 5" (s ) = s;. Itis trivial to see that this gives a
correlated equilibrium. In particular, correlated equlhbna always exist.

4. The set of correlated equilibria of a finite normal form game is convex. Recall that this is not true for Nash
equilibria. To see this intuitively, consider the following examples.

Example 30 (Game of assurance). Consider the game of assurance,

L R
T |1,1]00
B | 0,022

We have seen that (7, L) and (B, R) are Nash equilibria, but (%T @ %B, %L (<] %R) is not. Here is a correlated equilibrium
where player 1 plays 17 & B and player 2 plays L & 3R “effectively”: Q; = {r,b}, Q, = {I,r}, p(t,]) = p(b,r) = 0.5
p(t,r) = pb,D) =0, 57(1) =T, 57(b) = B, s5(I) = L, s5(r) = R. .

In this example, the signal structure is effectively a coordination device that picks the (7, L) Nash equilibrium 50%
of the time, the (B, R) Nash equilibrium 50% of the time. Effectively, this correlated equilibrium can be thought of
as flipping a coin, then instructing the players to play the (7, L) Nash equilibrium if heads up, and the (B, R) Nash
equilibrium if tails up. We also refer to such coordination device as a public randomization device. This point can
be made more general.

Example 31 (Public randomization device). Fix any normal form game G and fix K of its pure Nash equilibria,
E(l), ...,E(K). Then, for any probabilities pi, ..., px with p; > O, Z,’((:l pr = 1, consider the signal space with Q; =
{1,...,K} for every j € N, the joint distribution such that p(k, .. k) pr foreach 1 < k < K, and p(w) = 0 for any
w where not all n dimensions match, and the strategies s](k) = sj ) for each je€N,1 <k <K. Then (Q,p,s")is a
correlated equilibrium. Indeed, after seeing the signal &, each player knows that others must be playing their part of
the k-th Nash equilibrium. As such, her recommended response s( ) must be optimal. ¢
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In general, fix K correlated equilibria {(Q®), p®, s*®)}K = of a game and some strictly positive probability weights
( pk),{(=1 , we can construct a new correlated equilibrium by first throwing a K-faced dice which falls on k with probability
Pk, and instruct the players to play the k-th correlated equilibrium if face k realizes as outcome. The players will follow
the instruction exactly because each (Q®W, p®, s*®) is a correlated equilibrium in the first place. This two-stage
process gives a correlated equilibrium of the game, which is a mixture with weights (pk)lf: , of the original correlated
equilibria.

Example 32 (Coordination game with an eavesdropper). Three players Alice (P1), Bob (P2), and Eve (P3, the “eaves-
dropper”) play a zero-sum game. Alice and Bob win only if they show up at the same location, and furthermore Eve is
not there to spy on their conversation. The payoffs are given below. Alice chooses a row, Bob chooses a column, and
Eve chooses a matrix.

L R R L R
L|-1,-1,2 | -1,-1,2 L| 1,1,-2 | -1,-1,2
R | -1,-1,2 | 1,1,-2 R|-1,-1,2 | -1,-1,2

The following is a correlated equilibrium. Q; = Q, = Q3 = {[,r}, p(l,1,]) = 0.25, p(l,1,r) = 0.25, p(r,r, 1) = 0.25,
p(r,r,r) =025, s7() = L and s7(r) = R for all i € {1,2,3}. The information structure models a situation where Alice
and Bob jointly observe some randomization device unseen by Eve'* and use it to coordinate on either both playing
L or both playing R. Eve’s signals are uninformative of Alice and Bob’s actions. Indeed, after seeing either w3 = /
or wy = r, Eve thinks the chances are 50-50 that Alice and Bob are both playing L or both playing R, so she has no
profitable deviation from the prescribed actions s3(/) = L, s5(r) = R. On the other hand, after seeing w; = [, Alice
knows for sure that Bob is playing L while Eve has a 50-50 chance of playing L or R. Her payoff is maximized by
playing the recommended s7(/) = L. (Other deviations can be checked similarly.)

Eve’s expected payoff in this correlated equilibrium is % 2+ % - (=2) = 0. However, if Alice and Bob were to play
independent mixed strategies, then Eve’s best response leaves her with an expected payoff of at least 1. To see this,
suppose Alice plays L with probability g4 and Bob plays L with probability gg. If g4 - g5 > (1 — ga) - (1 — gp), so that
it is more likely that Alice and Bob coordinate on L than on R, Eve may play L to get an expected payoff of:

1 3
(-2 (1-g0) (=g +@-[1-(1-g0)-(1-gp)] > (-2)- 7+ 5 = L.

Alice and Bob meet without Eve otherwise

where we used the factthat g - gp > (1 —qga) - (1 —gp) > ga+qp=1= (1 —¢qa) - (1 —gp) < }1. On the other hand,
if ga - gp < (1 —qa) - (1 — gp), then Eve may play R to get an expected payoff of at least 1. ¢

3 Characterization of Correlated Equilibria

In general, it is impossible to characterize the set of correlated equilibria of a given game, due to the arbitrary choice
of signal spaces. Yet every correlated equilibrium induces a probability distribution on the set of strategy profiles, and
such distributions are often the main object of analyses when one applies the concept of correlated equilibrium. The
formal definition of correlated equilibrium distributions is as follows:

Definition 33 (Correlated equilibrium distribution). In a normal form game G = <N, (S j)jen, (u)) jEN>, a correlated
equilibrium distribution is a probability distribution ¢ € A(S) induced by a correlated equilibrium (€, p, s*),

g=pos.
That is,
q(s) = plw € Q : 5" (w) = s}).

For instance, the correlated equilibrium in Example 30 induces the following correlated equilibrium distribution:
q(T,L) = q(B,R)=0.5,q9(T,R) =q(B,L) = 0.

The set of correlated equilibrium distributions has a very convenient structure. It is a convex and compact subset of
A(S), characterized by a set of linear inequalities.

14Perhaps an encrypted message.
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Proposition 34. In a (finite) normal form game G = <N, (S ) jens (uj)j€N>, a probability distribution g € A(S) is a
correlated equilibrium distribution if and only if for each s; with q(s;) > 0 and for each s;,

Z q(s—jls Pu;(sj, s-j) = Z q(s—jls pu;(s), s-j). (D

5-j€S-; 5-j€S-;

The condition (1) is called the obedience condition. To see its logic, suppose that a disinterested moderator randomly
selects a strategy profile s from the distribution g and recommends each player j to play s; without giving any other
information. Hearing the recommendation, player j comes to believe that the other players’ strategies are distributed
by g(:Is;). The obedience condition states that she follows the recommendation.

Formally, this corresponds to the simple correlated equilibrium (Q, p, s*) with Q = S, p = ¢, s*(s) = s. Hence, the
obedience condition is a sufficient condition for a correlated equilibrium distribution. Conversely, in order to capture
probability distributions induced by correlated equilibria with respect to arbitrary information structures, it suffices to
consider this limited set of information structures. To see this, take any correlated equilibrium (€2, p, s*) and its induced
correlated equilibrium distribution g on §. Now suppose that instead of letting j know that the realized state is w;,
we only inform him that he needs to play si(w)) according to s%. Since he did not have an incentive to deviate under
any information (by definition of correlated equilibrium), by the sure-thing principle, he does not have an incentive to
deviate now. Hence, the new model with limited information is also a correlated equilibrium. One crucial assumption
that leads to this simplification is that u; does not depend on w;.

Thanks to Proposition 34, the set of correlated equilibrium distributions is characterized by a finite set of linear in-
equalities:
> (ujtsjs-p—ui(ss-p)alsys )20 VjeN, VssieS.
s_j€S_;
Example 35 (Game of assurance). We calculate in this example all correlated equilibrium distributions of the game
of assurance,

L R
T|1,1|0,0
B |0,0|22
Denote a distribution on S by the following table:
L R
T | a
B|c|d

From the obedience conditions, this is a correlated equilibrium distribution if and only if

(1=0)a+(0-2)b>0, (P1,T)
(O=1c+(2-0)d>0, (P1, B)
(1-0)a+(0-2)c>0, (P2, L)
O—-Db+(2-0)d 0. (P2,R)

The above conditions reduce to a > 2b, a > 2c¢, 2d > b, 2d > c. For all possible vectors of probabilities (a, b, ¢, d) that
satisfies these conditions, there exists an associated correlated equilibrium.

Next consider the symmetric correlated equilibria, where b = c¢. Such symmetric distributions can be represented by
pairs (a, b), with a + 2b < 1 and d = 1 — a — 2b. The above conditions further reduce to b < a/2 and 2a + 5b < 2. The
set of symmetric correlated equilibrium distributions is the shaded area in Figure 6.
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Figure 6: Symmetric correlated equilibria and Nash equilibria in the game of assurance.

Note that the Nash equilibria are also among the symmetric correlated equilibrium distributions where (1, 0) is (7, L),
(0,0) is (B, R) and (4/9,2/9) is the mixed strategy equilibrium (%T @®1B,iLe %R). s

In this example, the set of symmetric correlated equilibrium distributions is simply the convex hull of the Nash equi-
librium distributions. Of course, there are also asymmetric correlated equilibria. In general, under broad conditions,
the Nash equilibria are located on the boundary of the set of correlated equilibrium distributions.

Example 36. We calculate in this example all correlated equilibrium distributions of the game studied in the lecture,

L R
U|51)00
D |44 1,5
Denote a distribution on S by the following table:
L R
Ulal|b
D|c|d

From the obedience conditions, this is a correlated equilibrium distribution if and only if

(5=4a+(0-1b >0, (P1,U)
(4-5)c+(1-0)d >0, (P1,D)
(1-0)a+(@4—-5)0c>0, (P2, L)
O=1)b+(5-4)d>0. (P2, R)

The above conditions reduce to a > b, a > ¢, d > b, d > c. For all possible vectors of probabilities (a, b, ¢, d) that
satisfies these conditions, there exists an associated correlated equilibrium.

Note that (1, 0, 0, 0) corresponds to the pure strategy Nash equilibrium (U, L), (0,0, 0, 1) corresponds to the pure strat-
egy Nash equilibrium (D, R), and (1/4, 1/4,1/4, 1/4) corresponds to the mixed strategy Nash equilibrium (% Uo %D, %L @ %R)
Moreover, (1/3,0,1/3,1/3) corresponds to the correlated equilibrium constructed in the lecture. Froma > ¢, d > c,
and a + ¢ + d < 1, we can conclude that ¢ < 1/3. Hence, this correlated equilibrium is the one with the highest prob-

ability that the strategy profile (D, L) is played. One can proceed to show that this correlated equilibrium maximizes
the sum of the players’ expected payoffs. ¢
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Economics 2010a > Section 3: Rationalizability and Nash Implementation ——— 11/07/2021

(1) Rationalizability; (2) Mechanism design and Nash implementation

TF: Chang Liu (chang_liu@g.harvard.edu)

“But I don’t want to go among mad people,” Alice remarked.
“Oh, you can’t help that,” said the Cat: “we’re all mad here. I'm mad. You're mad.”
“How do you know I'm mad?” said Alice.

“You must be,” said the Cat, “or you wouldn’t have come here.”

— Alice in Wonderland, on common knowledge of irrationality

1 Rationalizability
1.1 Two algorithms. Consider a normal form game G. Here we review the two algorithms of iterative strategy elimi-
nation studied in lecture.

Algorithm 37 (Iterated elimination of strictly dominated strategies, “IESDS”).
1. Initialize: $© := S for each i.
2. Fort>0:
§§H1) = {si € S'Et) Ao e A(SA?)) s.t. Vs_; € SA'(_?, ui(ory, s—;) > ui(s;, s,,-)}.

3. Output:

8= ﬂS’l(.’).

>0

The idea behind IESDS is that if some mixed strategy o; yields strictly more payoff than the action s; regardless
of what other players do, then i will never use the action s;. The “iterated” part comes from requiring that (i) the
dominating mixed strategy must be supported on i’s actions that survived the previous rounds of eliminations; (ii)
the conjecture of what other players might do must be taken from their strategies that survived the previous rounds
of eliminations.

Algorithm 38 (Iterated elimination of never best responses, “IENBR”).
1. Initialize: § l(p) =8, foreach .
2. Fort > 0:
S’Em) = {s,- € S’l@ :do_; € A(S’(_?) s.t. Vsl € SEO, ui(s;, o_) > u,-(s;,O'_,-)}.

3. Output:

§p =8,

>0

It is important to note that A (§ (_’l)) # [T A (S ,((’)) when n > 3.5 The left-hand-side is the set of correlated strategies

of players other than i, i.e., the set of all joint distributions on § (_'l) Such a correlated mixed strategy might be generated,
for example, using a signal-space kind of setup as in correlated equilibrium. The elimination of never best responses
can be viewed as asking each action of player i to “justify its existence” by naming a correlated mixed strategy'® of
opponents for which it is a best response. The “iterated” part comes from requiring that this conjecture of correlated
opponents’ strategy have support in their strategies that survived the previous rounds of eliminations.

I5When there are only two players, equality does hold: A(S‘ (f?) = [Tkzi A(§ ](f> ) This is because —i refers to exactly 1 player, not a group of
players, so we do not get anything new by allowing —i to “correlate amongst themselves”. As such, we did not have to worry about correlated vs.
independent opponent strategies when we computed rationalizable strategy profiles for a two-player game in lecture.

16This correlated opponents’ strategy might reflect i’s belief that opponents are colluding and coordinating their actions, or it could reflect
correlation in i’s subjective uncertainty about what two of her opponents might do.
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Another view on these two algorithms is that they make progressively sharper predictions about the game’s outcome
by making more and more levels of rationality assumptions. A “rational” player i is someone who maximizes the
utility function u; as given in the normal form game G. Rational players are contrasted against the so-called “crazies”
present in some models of reputation, who are mad in the sense of either maximizing a different utility function
than normal players, or in not choosing actions based on utility maximization at all. From the analysts’ perspective,
knowing that every player is rational allows us to predict that only actions in $ 51) (equivalently, § fl)) will be played by
i, since playing any other action is incompatible with maximizing u;. But we cannot make more progress unless we are
also willing to assume what i knows about j’s rationality. If i is rational but i thinks that j might be mad, in particular
that j might take an action in S j\.§‘ 5.1), then the step for constructing $ 52) for i does not make sense. As it is written in
Algorithm 37, we should eliminate any action of i that does strictly worse than a fixed mixed strategy against all action
profiles taken from $ (_li), which in particular assumes that j must be playing something in § (].1). In general, the #-th step
for each of Algorithm 37 and Algorithm 38 rests upon assumptions of the form “i knows that j knows that ... that k is
rational” with length ¢.

1.2 Equivalence of the two algorithms. In fact, Algorithm 37 and Algorithm 38 are the equivalent, as we now demon-
strate.!”

Proposition 39. 8 = §% for eachi € N and t > 0. In particular, §° = §%.

In view of this result, we call § 7 the rationalizable strategies of player i, but note that it can be computed through
either IENBR or IESDS.

Proof. Do induction on #. When 7 = 0, 8” = § = §, by definition. Suppose for eachi € N, §\” = §".
To establish that S E”l) cS l(f”), take some s} € 5’5”1). By definition of IENBR, there is some o_; € A (5’ (ff) s.t.

ui (s, o) zu(si, o), Vsie 51@.
The inductive hypothesis lets us replaces all tildes with hats, so that there is some o_; € A (§ (3) s.t.
ui (s, o) zu(s;, o), Vs, e S‘E’).

If s7 were strictly dominated by some &; € A (§ E”), then u;(s7, o) < ui(64,0-;), because the same strict inequality
holds at every s_; in the support of o_;. By Fact 3, there exists some §; € S l(.’) with 6(8;) > 0 so that u;(s,0_;) <
u;(8;, o_;), contradicting s being a best response to o_;.

Conversely, for the reverse inclusion 55’“) 2 §§'+l), suppose s; € S E”l). Combining definition of IESDS and the

inductive hypothesis shows that for each o; € A (5 E')), there corresponds some s_; € S (_tl) so that u; (s;k s_i) > ui(o, 5_i)
(d)

—i

(otherwise, s} is strictly dominated by o). Now enumerate 5(3 = {s(fl.), vy §
subset of of R¥:

} and hence construct the following

V= {veRd : Aoy GA(S’E’)) s.t. v < u,'(a',',s(_]?), V1 Sksd}.

That is, every o; € A (S l@) gives rise to a point (u,-(o-i, s(_ll.)), o ui(oy, s(_dl.))) € R% and V is the region to the “lower-left”
of this collection of points. We can verify that V is convex and non-empty. Now consider the point

% 1 % d d
w= (ui(si , S(,,-))7 oo ui(sy, sif)) e R%.

We must have w ¢ int(V), where int(V) is the interior of V. As such, separating hyperplane theorem implies there is
some ¢ € R4\{0} with ¢g-w > ¢-v forall v € V. Since V includes points with arbitrarily large negative numbers in each
coordinate, we must in fact have g € Rﬂ\{O}, i.e., g cannot have a negative coordinate. So then, g may be normalized
so that its coordinates add up to 1, and thus it can be viewed as some correlated strategy o, € A (S’ S’?) This strategy

7Note that the finiteness of the strategy space is also important for this equivalence result. To see a counterexample, consider the following
two-player game with infinite strategies: S| = {swap, 1,2,3,...}, 52 ={1,2,3,...},

52 if §1 = swap,
s1 otherwise.

uy(s1, 52) :{

In other words, player 1 can secure as payoff any positive integer she picks, but she can also swap for the integer that player 2 picks. In this game,
the strategy swap for player 1 is not strictly dominated by any mixed strategy (with finite mean): swap works better when player 2 chooses an
integer larger than the mean of that mixed strategy. However, swap is never a best response to any player 2’s mixed strategy (with finite mean):
swap is worse than player 1’s choice of any integer larger than the mean of that mixed strategy.
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has the property that u; (s;‘, a'il.) > uy; (a',», foad l.) forallo; € A (S’ E’)), showing that in particular s} is a best response to
o amongst S’l@, hence 57 € 55’“). This establishes the reverse inclusion S’f.m) cS l(.”l) and completes the inductive
step. |

1.3 Rationalizability and equilibrium concepts. In some sense, the collection of rationalizable strategies includes the
collection of correlated equilibrium strategies. To be more precise,

Proposition 40. If (Q, p, 5*) is a correlated equilibrium, then s} (w;) € Sl‘."’for everyi € N and w; € Q;.

Proof. We show for any player i and any s; such that s; € 57 (€);) (the image of mapping s7), s; € S E') for every t. This
statement is clearly true when ¢ = 0. Suppose this statement is true for ¢+ = 7. Then, for each player i and each signal
w; € Q;, consider the correlated opponent strategy o, constructed by

or(so) = p(woi € Qi it s™j(wo) = 5o} lw;)

By definition of correlated equilibria, s7(w;) best responds to o .. Furthermore, o*; € A (S (_Tl)) by inductive hypothesis.

Therefore, §; € S ET”), completing the inductive step. O

Therefore, we see that correlated equilibria (and in particular, Nash equilibria) embed the assumption of common
knowledge of rationality: not only is Alice rational, but also Alice knows Bob is rational, and Alice knows that Bob
knows Alice is rational, etc.

1.4 Nested solution concepts. Here we summarize the inclusion relationships between several solution concepts. For
a normal form game G,
Rat(G) 2 CE(G) 2 NE(G).

2 Mechanism Design and Nash Implementation

2.1 Mechanism design as a decentralized solution to the information problem.

Definition 41 (Mechanism design problem). A mechanism design problem consists of the following:

1. A (finite) collection of players N = {1, ..., n}.

2. A set of states of the world ©.

3. A set of outcomes A.

4. A state-dependent utility u; : A X ® — R for each playeri € N.
5. A social choice rule /' : © =3 A.

Every mechanism design problem presents an information problem. Consider a designer who is omnipotent (all-
powerful) but not omniscient (all-knowing). It can choose any outcome a € A. However, the outcome it wants to pick
depends on the state of the world. When the state of the world is 8, the designer’s favorite outcomes are f(6). While
every player knows the state of the world, the designer does not. Think of, for example, a town hall (designer) trying to
decide how much taxes to levy (outcomes) on a community of neighbors (players), where the optimal taxation depends
on the productivities of different neighbors, a state of the world that every neighbor knows but the town hall does not.

Due to the designer’s ignorance of 6, it does not know which outcome to pick and must proceed more indirectly. The
goal of the designer is to come up with an incentive scheme, called a mechanism, that induces self-interested players
to choose one of the designer’s favorite outcomes. The mechanism enlists the help of the players, who know the state
of the world, in selecting an outcome optimal from the point of view of the designer.

More precisely,

Definition 42 (Mechanism). Given a mechanism design problem, a mechanism (S, g) consists of:

1. A set of (pure) strategies S; for each i € N.

2. Amapg:S — A.
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A mechanism is a game form, i.e., a way to model the rules of a game, or an institution, independently of the players’
utility functions over the game’s outcomes. The designer announces a set of pure strategies S; for each player and a
mapping between the profile of pure strategies and the outcome. The designer promises to implement the outcome
g(s) when players choose the strategy profile s.

In state 6, the mechanism (S, g) gives rise to a normal form game, G(6), where the set of actions of player i is S;
and the payoff i gets from strategy profile s is u;(g(s), ). The mechanism solves the designer’s information problem
if playing the game G(6) yields the same outcomes as f(6). To predict what agents will do when they play the game
G(6), the designer must pick a solution concept. We will use Nash equilibrium.

Let NE,(6) denote the set of Nash equilibrium outcomes in each state of the world,
NE,(0) ={a € A: ANE of G(0), 5, s.t. a = g(s)}.

Definition 43 (Nash implementation). The mechanism (S, g) Nash implements social choice rule f if NE4(6) = f(6)
for every 8 € ©.

If the designer wants to use a solution concept other than Nash equilibrium, then it would simply replace “NE” in the
above definition.

Loosely speaking, mechanism design is “reverse game theory”. Whereas a game theorist takes the game as given and
analyzes its equilibria, a mechanism designer takes the social choice rule as given and acts as a “game maker”, aiming
to engineer a game with suitable equilibria.

2.2 Maskin monotonicity and no veto power. It is natural to ask which mechanism design problems admit Nash
implementations. As we saw in lecture the following pair of conditions are important.

Definition 44 (Maskin monotonicity). A social choice rule f satisfies Maskin monotonicity (MM)'® provided that
foralla e Aand 0,0 € O, if

1. a € f(0),
2. forallie Nand b € A, u;(a,0) > u;(b,0) = u; (a,d) > u; (b,0),
then a € f(0).

Equivalently, we can write the second condition as for all player i, {b : u;(a,0) > u;(b,0)} C {b : uj(a,0) > u;(b,8)}.
In words, if a is chosen in some state 6, then it should also be chosen when the set of outcomes weakly worse than a
expands for everyone.

Definition 45 (No veto power). A social choice rule f satisfies no veto power (NVP) provided that for all @ € A and
6 € 0, if there exists i € N such that

uj(a,0) > uj(b,0) forall j#iandallb € A
then a € f(6).
Theorem 46 (Maskin, 1999).
1. If f is Nash implementable, then it satisfies MM.

2. Ifn 2 3 and f satisfies MM and NVP, then f is Nash implementable.

Proof. See lecture. O

Example 47 (NVP but not MM). Suppose n > 3 and individuals have strict preferences over outcomes A in any state
of the world. Consider the social choice rule “top-ranked rule”, fT°, that chooses the outcome(s) top-ranked by the
largest number of individuals. That is, a € fTOP(Q) if and only if for all b € A,

#{i : ui(a,0) > u;i(c,0) for all ¢ # a} > #{i : u;(b,0) > u;(c,0) for all ¢ # b}.

To see why fT"p satisfies NVP, suppose for a € A and 6 € O, there exists i* € N such that u;(a, 6) > u;(b,6) for all j #
i* and all b € A. Since we assume preferences are strict, it follows that

#i:uia,0) >uc,0)forallc #a}>n-1,

18What Professor Maskin called “monotonicity” in lecture is usually referred to as “Maskin monotonicity” in the literature, cf. Footnote 8.
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while for any b # a,
#i:ui(b,0) > ui(c,0) forall c # b} < 1.

Since n > 3, a € fTP(6).

To see why TP does not satisfy MM, consider the following preferences: n = 3, A = {a, b, c}. In state 0, u,(a, 6) >
u1(b,0) > uy(c,0), uz(b,0) > ux(c,0) > uy(a,d), and us(c,6) > uz(b,0) > uz(a,d); in state ¢, the preferences are
unchanged except that u3(b, 8’) > us(c,8) > us(a, ). Then outcome a did not drop in ranking relative to any other
outcome for any individual from 6 to ¢, yet fTP(0) = {a, b, c} while fTP(#") = {b}. This shows f™P does not satisfy
MM. Hence by Theorem 46 it is not Nash implementable. ¢

Example 48 (MM but not NVP, yet implementable). Suppose n > 3 and individuals have strict preferences over
outcomes A in any state of the world. Consider the social choice rule “dictator’s rule” fP, that chooses the top-ranked
outcome of player 1, the dictator.

To see why fP satisfies MM, note that a € f(6) implies that u;(a, 6) > u,(b, 6) for all b # a. In any state of the world ¢’
where a does not fall in ranking relative to any other outcome for any individual, it remains true that u;(a, 8') > u(b, ")
for any b # a. As such, a € f°(¢’) also.

To see why fP does not satisfy NVP, consider the following preferences: n = 3, A = {a,b}. In state 6, u;(a,) >
uy(b,0), ur(b, 0) > uy(a, ), and us(b, 8) > uz(a, d). We have b being top-ranked for all individuals except player 1, yet
1P) = {a}.

Theorem 46 does not say whether fP is Nash implementable or not. However, it is easy to see that f° can be
implemented by the following mechanism: ask each player their favorite outcome, but only implements the answer of
player 1 while ignoring everyone else. This example shows MM plus NVP are sufficient for Nash implementability
when n > 3, but NVP is not necessary. ¢

Example 49 (MM but not NVP, and not implementable'”). Suppose n = 3 and each state represents a set of strict
orderings (>1, >, >3) of all individuals over outcomes A = {a, b, c}. Consider the social choice rule, f:

e For x € {a, b}, x € f(0) if and only if x is Pareto-optimal and top-ranked for 1.

e ¢ € f(9) if and only if ¢ is Pareto-optimal and not bottom-ranked for 1.

It is easy to verify that f satisfies MM. To see why f does not satisfy NVP, suppose that in state 6 player 1 bottom-ranks
c, then c ¢ f(6) even if players 2 and 3 top-rank c.

To see why f is not Nash implementable, consider the following three profiles 6, ¢’, 6”:

e :b>c>ac>a>b,c>3a>3b = fO=1{b,c}
o ta>1b>c,c>yb>a,c>3a>3b = f(@)={al}.

e @ :b>a>c,a>b>c,a>3b>3¢c = f(0)=1{b}.

If f were implementable, there would exist a mechanism (S, g) and a Nash equilibrium s* of G(6) such that g(s*) = c.
It follows that for all s; € S, g(s1, 55, s’g) # b, otherwise s; would be a profitable deviation for player 1 in state 6.

If there existed s7 € S such that g(s{, 53, s3) = a, then (s{, 55, s3) would be a Nash equilibrium of G(6") (no one has
a profitable deviation), a contradiction since a ¢ f(¢"). We concluded that for all s1 € Sy, g(s1, 53, 53) = c. But this
indicates that s* is a Nash equilibrium of G(8"), a contradiction since ¢ ¢ f(8').

This example shows MM per se is not sufficient for Nash implementability. ¢

Example 50 (The electoral college rule’’). Consider a society made up of three states, {A, B, C}. The voters in each
state will vote over the set of candidates {H, T, J}. State A has 10 voters and 6 electors, state B has 7 voters and 5
electors, and state C has 3 voters and 2 electors. Once a candidate wins the state, the electors will vote according to
the winning candidate in their state. Overall, the candidate wins who wins the most electoral votes.

Assume that in state of the world 6 all 10 voters of state A have preferences H > T > J, all 7 voters of state B have
preferences T > H > J, while in state C one voter has the preferences H > J > T, while the two remaining voters
have J > T > H. Then H carries state A and has 6 electors, T carries state B and has 5 electors, while J carries state
C and has 2 electors. Overall, candidate H wins with 6 electoral votes.

19This example is adapted from Maskin (1999, Example 2).
20This example is developed by Jetlir Duraj and Kevin He. They conjecture that the electoral college in the U.S. electoral system does not satisfy
MM. This is an attempt at showing what could go wrong in a simple example.
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Consider now state of the world 6, which is the same as 6 except, that in state C the two last individuals have
preferences T > J > H (instead of J > T > H). Then H hasn’t fallen relatively to the other candidates for any voter,
but now candidate T wins the electoral college, by carrying states B and C with 7 electors in all.

This shows that the electoral college rule does not satisfy MM. Note, that by simple popular vote, H would win in both
states of the world 6 and &', since she has 11 voters assured, while the most that 7 could hope to get is 9 votes (in 6").

Nevertheless, popular vote is also susceptible to failure of MM. You can try to think of an example. ¢

Example 51 (December 2016 Final Exam). Suppose n = 3 and each state represents a set of strict orderings
(>1,>2,>3) of all individuals over alternatives A = {a, b, c}. Let social choice rule f be “rank-order voting” (“Borda
count”). That is, an alternative gets 3 points every time it is ranked first by some individual, 2 every time it is ranked
second, and 1 point every time it is ranked third. Points are summed across individuals, and f(6) consists of the
alternative(s) with the highest overall point total. Prove that f is not implementable in Nash equilibrium.

Solution:
Let R?(a) € {1,2, 3} be the ranking alternative a gets from agent i in state 6. Then the rule we are considering is

3 3
1) = {a €A: Y Rl@= ) Ri(b),Ybe A} :
i=1 i=1

If f were Nash implementable, it would satisfy MM. Consider the state 6 : @ > ¢ >; b, b >, a >y ¢, ¢ >3 b >3 a.
Then each of the alternatives in A gets 6 points, so f(6) = {a, b, c}. Pick a € f(0) and consider the state 6, where the
preferences of players 2 and 3 are the same and player1’s preference is, instead, a > b > c¢. Then f(6") = {b} because
b gets 7 points. This gives a contradiction to MM, as a hasn’t fallen relatively to the other outcomes for any player.
Therefore, f is not implementable. ¢
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Economics 2010a > Section 4: Bayesian Games 11/14/2021

' (1) Bayesian games; (2) Auction model; (3) Solving for auction BNEs; (4) Revenue equivalence theorem; '

' (5) Optional: The universal type space '
TF: Chang Liu (chang_liu@g.harvard.edu)

1 Bayesian Games

1.1 The model of a Bayesian game. In our brief encounter with mechanism design, we considered a setting where
the designer is uncertain as to the state of the world 6 € ©®, but every player knows 6 perfectly. Many economic
situations involve uncertainty about payoff-relevant state of the world amongst even the players themselves. To take
some examples:

e Auction participants are uncertain about other bidders’ willingness to pay.
e Investors are uncertain about the profitability of a potential joint venture.

e Traders are uncertain about the value of a financial asset at a future date.

How should a group of Bayesian players confront such uncertainty?

Definition 52 (Bayesian game). A Bayesian game B = (N, (O))ien, (A))ien, Ui)ien, (Pi)ien) consists of:

1. A (finite) collection of players N = {1, 2, ..., n}.
2. A set of actions A; for each i € N.

3. A set of states of the world ©® =[], ©,.

4. A prior p; € A(®) foreachi € N.

5. A utility function u; : AX ® — R foreachi e N.

Definition 53. A pure strategy of player i in a Bayesian game is a mapping s; : ®; — A;. A mixed strategy of player
i in a Bayesian game is a mapping o; : ©; — A(A)).

While there exist some more general approaches (see the optional material on the universal type space, for example),
most models of incomplete-information games you will encounter will impose the common prior assumption: there
exists a common prior for each i € N, which we call u € A(®).

For ease of exposition, for now we will focus on the case where O is finite.?!

A Bayesian game proceeds as follows. A state of the world 8 is realized. Player i learns the i-th dimension, 6;, then
takes a pure action from her action set A; or a mixed action from A(A;). The utility of player i depends on the profile
of actions as well as the state of the world 6, so in particular it might depends on the dimensions of # that i does not
observe. The subset of Bayesian games where u; does not depend on 6_; are called private value games.

Player i’s strategy is a function of 6;, not of 8, for i can only condition her action on her partial knowledge of the state
of the world. For reasons we make clear later, ®; is often called the type space of i and one often describes a strategy
of i as “type 6, does X, while type 6! does Y.

A strategy profile in a Bayesian game might remind you of a correlated equilibrium. Indeed, in both setups each
player observes some realization (her signal in CE, her type in Bayesian game), then performs an action dependent on
her observation. However, unlike (€, p) in the definition of a correlated equilibrium, the (®, p) in a Bayesian game
is part of the game, not part of the solution concept. Furthermore, while the signal profile w € Q in a CE is only
a coordination device that does not by itself affect players’ payoffs (as in an unenforced traffic light), the state of the
world in a Bayesian game is payoff-relevant.

21'The Bayesian game model can also accommodate games with infinitely many states of the world, such as auctions with a continuum of possible
valuations for each bidder.
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Example 54 (August 2013 General Exam). Two players play a game. With probability 0.5, the payoffs are given by
the left payoff matrix. With probability 0.5, they are given by the right payoff matrix. Player 1 knows whether the
actual game is given by the left or right matrix, while Player 2 does not. Model this situation as a Bayesian game.

L C R L C R
T |-2-2|-1,1|0,0 T 0010000
M| 1,-1 3,5 | 3,4 M| 0,0|00/00
B 0,0 4,2 | 2,4 B |00 10| 4,4

Solution:

Let ©; = {l,r}, ©; = {0}, u € A(®) with u(l,0) = u(r,0) = 0.5. In state ([, 0), the payoffs are given by the left matrix.
In state (r, 0), they are given by the right matrix. There are thus two types of player 1: the type who knows that the
payoffs are given by the left matrix, and the type who knows that the payoffs are given by the right one. There is
only one type of player 2. The utility of each player depends on (a;,as,6). For example uy(B,C, (/,0)) = 2 while
uy(B, C,(r,0)) = 0. In particular, the payoff to player 2 depends on 6, so this is not a private value game.

A pure strategy of player 1 in this Bayesian game is a function s; : ®; — Ay, in other words the strategy must specify
what the /-type and r-type of player 1 will do. A pure strategy of player 2 is a function s, : ®, — Aj, but since @, is
just a singleton, player 2 has just one action in each of her pure Bayesian game strategies. ¢

1.2 Bayesian Nash equilibrium. When a profile of pure opponent strategies s_; is played, after observing 6;, player i
evaluates her expected utility from any pure action a; € A; by:

E;[ui(a;, s—i(6-), (6;,6-))16;] = Z Di(0-il6)ui(a;, s_i(6-), (6, 0-)).
6_,€0_;

Similarly, we can extend the domain into mixed strategies. When a profile of mixed opponent strategies o _; is played,
after observing 6;, player i evaluates her expected utility from any mixed action «; € A(A;) by:

Z Z pi(0-il6)ai(a;) [n[o'j(ej)](aj)] ui(a;, a_;, (6;,6-;)).

6_;€0_; acA J#EI

We will write E;[u;(a;, 0-i(6-;), (6;, 0-;))|6;] for this utility. Here’s the most common equilibrium concept for Bayesian
games.

Definition 55 (Bayesian Nash equilibrium). A pure strategy Bayesian Nash equilibrium is a pure strategy profile
s* such that for each player i € N and each type 6; € ©;,

Bilui(s7(6:), 57 (6-), (6;, 0-))I6:] = Eilui(al, s*,(60-;), (6, 0-))\6;] for all a; € A;.

Similarly, a mixed strategy Bayesian Nash equilibrium (BNE) is a mixed strategy profile o such that for each
player i € N and each type 6; € ©,,

Eilui(o (6,), o (0-), (6;, 0-))16;] = Eilui(a;, o (6-), (6;, 0-))|6;] for all a; € A;.

Note that in the definition of a mixed BNE, it is without loss of generality to require no profitable unilateral deviation
to any pure action, a;, rather than any mixed action.

A BNE might be understood as a “correlated equilibrium with payoff-relevant signals”. Let’s focus on a pure
strategy BNE, s*. After observing her type 6;, player i derives from her prior a conditional belief p;(-|6;) € A(®_;) about
the types of other players. She knows s .(-), so she knows how these opponent types translate into opponent actions.
Unlike in a CE, however, she knows that her payoff also depends on the complete state of the world, 8 = (6;,6-;).
Analogous to CE, a BNE is a strategy profile such that, after player i observes her type 6; and calculates her expected
payoffs to different actions, she finds it optimal to play the prescribed action s7(6;) across all of her choices in A;.

Example 56 (August 2013 General Exam). Find all the BNEs in Example 54.
Solution:
Since player 2 has only one type, it is easiest to break things down by player 2’s action in equilibrium.

Step 1: Consider BNE where player 2 plays a pure strategy.
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1. 55 = L. In any such BNE, we must have s7(/) = M since the type-I player 1 knows for sure that player 2 is
playing L and that payoffs are given by the left matrix, leading to a unique best response of M. Yet this means
player 2 has a profitable deviation. Playing C yields an expected payoff of % S5+ % -0 = 2.5 (regardless of what
s7(r) is), which is better than playing L and getting an expected payoff of % (=D + % -0 = —0.5. Therefore,
there is no BNE with 53 = L.

2. 55 = C. In any such BNE, we must have s7(/) = s7(r) = B for similar reasoning as above. But that means player

gets an expected payoff of § -2+ 1 -0 = 1 by playing C, yet he can get § - 4+ 1 - 4 = 4 by playing R. Therefore,
there is no BNE with 53 = C.

3. 55 = R. In any such BNE, we must have s7() = M, s7(r) = B for similar reasoning as above. As such, player
2 gets an expected payoff of % -4+ % -4 = 4 from playing R. By comparison, he would get an expected
% (=1 + % -0 = —0.5 from playing L and an expected % -5+ % -0 = 2.5 from playing C.?*> Therefore, we see
that s7() = M, 57(r) = B, s5 = R is a BNE of the game.

Step 2: Consider BNE where player 2 mixes.

Note that in the left matrix, 7T is strictly dominated by M, so [o](DI(T) = 0. In the right matrix, 7 and M are weakly
dominated by B. Since we are ruling out the case of 05(L) = 1, it follows that [c}()](B) = 1.

[o7(DI(T) = 0 [o7(N](B) = 1 together imply that for player 2, R yields strictly higher payoff than L in either matrix,
so player 2 has to be mixing between C and R.

Suppose that (1) = pM & (1 — p)B. The indifference principle for player 2 implies that
05[5p+2(1-p)]+05-0=05-4+05-4 = p=2>1,

contradiction! So there is no such BNE.

To sum up, s7() = M, s7(r) = B, 55 = R is the unique BNE of the game. ¢

Example 57 (From old problem sets of Jerry Green). Two players are working together to complete a project.
When players 1 and 2 choose effort levels e, e, € [0, 1], the probability that the project is successfully completed
is %(1 +e1) ey . Assume that players receive payoff 1 if the project is successful, and that they incur a quadratic
disutility of effort which makes their expected payoff in the game equal to

1 2
u;(er,ez;c1,02) = 3 (I+ep)er —cie;.

Assume that ¢; = 1 is common knowledge, but that c; is known only to player 1, with player 2’s prior being that nature
chooses ¢ according to the probability function,

2
fx) = gx, if x € [2,3] and O otherwise.

Find all (pure and mixed) BNE of this game.
Solution:
Player 1’s type is given by his cost parameter c; € [2, 3]. Player 2 has a single type.

To find pure strategy BNE we note that in a BNE player 2’s effort level will be fixed (a function of her single type), so
player 1 can respond to it. Player 1’s maximization problem is,

1
. _ 2
max u; (e, ez;c1,C2) = 3 (1 +ep)ex —cey.
e
This is strictly concave in e; and the maximum is attained at
€

BR; (ez;¢1) = Tor
1

In contrast, player 2 must play a best response given expectations, since in equilibrium she has uncertainty about player
1’s effort level. Her maximization problem is

1 1
max E,, [uz] = E, [5 (1+ey)e — e%] = 3 (1+E[e])er — e%.
e

221t is not feasible for player 2 to “play C in the left matrix, play R in the right matrix” since he can only condition his action on his type. Player
2 knows only the prior probabilities of the two matrices, but not which one is actually being played.
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This is again strictly concave in e; and the maximum is attained at

1 +E/[e]

BR>(ey) = 7

In a BNE the strategies (e*l‘ (c1), es) are best responses to each other. That is

e . 1+E[ej(en)]

eT(Cl) = 4_317 ez - 4

3 e* 2 e* 3 e*
Eleen] = [ (2)2e de = 2 f -2
[ei(en)] fz (4c1) =C1 dcy 0 J, dcy 10

Plugging this into the best response function for player 2 yields

To solve we calculate first

4
LI+ 1
e2——4

Solving we find €5 = %. Plugging this into the equation of player 1 we get

0 5
4.39¢;, T8¢’

e, (c1) =

Since each player’s maximization problem is strictly concave, the best response correspondences are single-valued
(for fixed strategy of the other player). From this it follows there are no mixed strategy BNEs.

In all, the unique BNE is
. w_ [ 5 10
(e1 (Cl),ez) = (786‘1 s 39)~
¢

Example 58 (From MWG). The Alphabeta research and development consortium has two (non-competing) members,
firms 1 and 2. The rules of the consortium are that any independent invention by one of the firms is shared fully with
the other. Suppose that there is a new invention, the ‘Zigger’, that either of the two firms could potentially develop. To
develop this new product costs ¢ € (0, 1). The benefit of the Zigger to each firm is known only to that firm. Formally,
each firm i has a type 6; that is independently drawn from a uniform distribution over [0,1], and its benefit in case of
type 6; is Gl.z. The timing is as follows: The two firms privately observe their type. Then they each both simultaneously
decide to develop or not. Find the pure BNE of this game.

Solution:

We write s;(6;) = 1 if firm i develops and s;(6;) = 0 otherwise. If firm i develops when her type is 6; then her payoff is
Giz — ¢, regardless of the action of the other firm. If firm i decides to not develop when her type is 6; her expected payoft

is 61.2 Pry, (s : (Gj) = 1) . Hence, one calculates easily that developing is a best response for type 6; of i if and only if

1
c

1= Pro, (s,(03) = 1)}2 |

This inequality shows that the strategies in any potential BNE take the form of a cut-off rule: develop if and only if
own type is higher than a threshold. Let 6;, i = 1,2 be the cut-offs in a BNE. Given the cutoff strategies, we have
Pry, (s j (Oj) = 1) =1 -6, so that the thresholds satisfy the equations

0; >

0@ =c BE)=c

This implies that 6, = 6, = c3. This gives a unique potential BNE. It is then straightforward to check that the threshold
. . 1 .
strategies with threshold equal to ¢3 are indeed a BNE. ¢

Example 59 (Purification of mixed strategies).
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1. Find the unique Nash equilibrium of the following normal form game.

L R
T |00 |0-1
B |10 -1,3

2. Consider now the following perturbed version where & > 0 is a small number and a, b are independent and
uniformly distributed in [0, 1].

L R

T | €a,eb | ea, -1

B| l,eb | -1,3

Assume player 1 sees the draw of a but not of b and player 2 sees the draw of b but not of a. Find the essentially
unique Bayesian Nash equilibrium for fixed &.

3. What happens as € goes to zero? Interpret.

Solution:

1. It easy to see that there is no Nash equilibrium in pure strategies. It is also easy to see that there cannot be a
Nash equilibrium where only one of the players strictly mixes. By using the usual indifference conditions we
arrive at the unique Nash equilibrium where both player strictly mix (% To® iB; %L ® %R)

2. Note that for a fixed strategy of player 2, as a becomes larger and larger, 7 becomes more and more attractive in
comparison to B. There is thus a threshold value for a, call it p, so that player 1 chooses T whenever a > p and
B whenever a < p. The same logic applies to player 2 and thus there is a threshold g for him so that L is chosen
ifb>qgandRifb<gq.

From the perspective of player 1, at the threshold p the two pure strategies should be indifferent. Given the
threshold strategy of player 2 this implies that fora = p

gp=1-(1-g)+(=1)-q.
A similar indifference condition holds for player 2:

egg=-1-(1-p)+3-p.
We can solve this system in the two unknowns (p, g) to get

2+e 4-¢
8+e2’8+¢2)"

(p.q) = (

Thus, any BNE satisfies

. 2+g . 4—c
_ T, ifa> vl B) < L, ifb> )
si(a) = . r  S20) = . s
B, 1fa<8+82, R, 1fb<8+52’

To fully specify a BNE we need to specify strategies for the cases where a = p and b = g. We can take any pos-
sible specification of strategies for these cases, because they happen with probability zero from the perspective
of the other player’’, and the relevant optimality calculations involve comparing expectations/averages which
don’t depend on changes made in zero-probability events. Thus, up to strategies picked for the cases a = p and
b = g, the BNE strategies are unique.

2q is distributed according to a continuous distribution from the perspective of player 2 and similarly for b and player 1.

31



3. Note that as & goes to zero, (p, g) converges to (}T’ %) These thresholds give precisely the mixed NE calculated
in part 1. These kinds of perturbation arguments to support mixed Nash equilibria are well-known since seminal
work from Harsanyi who was trying to ‘micro-found’ why players in a game as in part 1, which has a unique
mixed NE, would pick the ‘right’ probabilities to randomize with, given their indifference between the pure
strategies in equilibrium. One possible story to tell is thus, that the players perceive the game as ‘perturbed’ as
above and are actually playing a pure BNE in a Bayesian game whose play converges to the mixed Nash of the
unperturbed game, as the perturbation goes to zero.

2 Auction Model

2.1 Definition of an auction. In section, we will make a number of simplifying assumptions instead of studying the
most general auction model. We will assume that: (i) auctions are in private value, so the types of —i do not matter
for i’s payoft; (ii) the type distribution is identical and independent across players; (iii) there is one seller who sells
one indivisible item; (iv) players are risk neutral, so getting the item with probability H and having to pay P in
expectation gives a player i with type 6; a utility of 6;H — P.

Definition 60 (Auction). An auction <N, F, [O, 5] ,(H)ien, (Pi),«eN> consists of:
1. A (finite) set of bidders N = {1, ..., n}.
2. A type distribution F over [0, 5], which admits a continuous density f with f(6;) > 0 for all 6; € [0, 5].

3. An allocation rule H; : R} — [0, 1] that specifies the probability that bidder i gets the item for every profile of
n bids for each i € N.

4. A payment rule P; : R} — R that specifies the expected payment of bidder i for every profile of n bids for each
i€N.

At the start of the auction, each player i learns her own valuation ;. The valuations of different players are drawn i.i.d.
from F, which is supported on the interval [0, 5]. Each player simultaneously submits a nonnegtive real number as
her bid. When the profile of bids (b1, ..., b,) is submitted, player i gets the item with probability H;(by, ..., b,) and pays
Pi(by, ..., b,) in expectation.

2.2 Some examples of (H, P) pairs. In lecture, we showed that a number of well-known auction formats — namely,
first-price and second-price auction — can be written in terms of some (allocation rule, payment rule) pairs. Now, we
turn to a number of unusual auctions to further illustrate the definition.”*

o Raffle. Each player chooses how many raffle tickets to buy. Each ticket costs $1. A winner is selected by
drawing a raffle ticket at random. This corresponds to H;(b, ..., b,) = ﬁ, P;(by,...,b,) = b;. Unlike the usual
auction formats like first-price and second-price auctions, the allocation rule H; involves randomization for

almost all profiles of “bids”.

o War of attrition. A strategic territory is contested by two generals. Each general chooses how much resources
to use in fighting for this territory. The general who commits more resources destroys all of her opponents’
forces and wins the territory, but suffers as much losses as the losing general. This corresponds to

1, if b; > b_;,
Hi(bi, b,i) = 05, lf b,‘ = b_,‘,
0, if bl‘ < b_i,

and P;(b;, b_;) = min{by, by}, so it is as if two bidders each submits a bid and everyone pays the losing bid.

e All-pay auction. Each player submits a bid and the highest bidder gets the item. Every player, win or lose, must
pay her own bid. Here, H;(by, ..., b,) is the same as in first-price auction, but the payment rule is P;(by, ..., b,) =
b;.

24Some of these examples may seem to have nothing to do with auctions at a first glance, yet our definition of an auction in terms of (H, P) is
general enough to apply to them. Here, as elsewhere in economics, theory allows us to unify our modeling and understanding of seemingly disparate
phenomena under a single framework.
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2.3 Auctions as private-value Bayesian games. Auctions form an important class of examples in Bayesian games.
As defined above, an auction is a private value Bayesian game with a continuum of types for each player. Referring
back to Definition 52, an auction <N, F, [O, 5] ,(H))ien, (Pi),-eN> can be viewed as a common prior private value Bayesian
game B = (N, (0))icn, (ADien, (Ui)ien, 1), Where:

1. N is the set of players.
2. Player i’s action set is A; = R, where actions b; € R, are interpreted as bids.

3. States of the world is ® = [O, 5]n, where the i-th dimension is the valuation of player i.

4. The common prior u on @ is the product distribution on [0, é]n derived from F.

5. Utility function u; specifies u;(by, ..., by, 6;) = 6;H;(by, ..., by) — Pi(b1, ..., by).

As such, many terminologies from general Bayesian games carry over to auctions. A pure strategy of bidder i is a
function s; : ®; — R,, mapping i’s valuation to a nonnegative bid. A (pure strategy) BNE in an auction is a strategy
profile s* such that for each player i and valuation 6; € ©;,

s57(6;) € argmax Ey , [6;H(b;, s*;(0-;)) — Pi(b;, s (6-)] .
b;eR,

As usual, player i of type 6; knows the mapping from opponent’s types 6_; to their actions s* (6_;), i.e., how each
opponent would bid as a function of their valuation, but she does not know opponents’ realized valuations. She
does know the distribution over opponents’ valuations, so she can compute the expected payoft of playing different
bids, with expectation® taken over opponents’ types.

3 Solving for Auction BNEs

Given an auction, here are two approaches for identifying some of its BNEs. But be warned: an auction may have
multiple BNEs and the following methods may not find all of them.

3.1 Weakly dominant BNEs. The following holds in general for private-value Bayesian games.

Definition 61 (Weakly dominant). In a private value Bayesian game, a strategy s; : ®; — A; is weakly dominant for
playeriif foralla_; € A_; and all §; € ©;,

u;(s;(0;),a_;,0;) > I/t,‘(a;, a_;, 6;) for all al’» €A,

Proposition 62. In a private value Bayesian game, consider a strategy profile s* where for each i € N, s is weakly
dominant for i. Then s* is a BNE.

Proof. Foreachi € N and 6; € ®;, definition of weakly dominant strategy says
ui(s;(6,),a_;,0;) > ui(a;,a_;,0;) forall a; € A;and a_; € A_,.

So in particular,
ui(s:(6y), s*(0-),0,) > ui(a’, s* (0-;),0;) foralla; € A; and 6_; € O_,.

Taking expectation over 6_; € @_;, we get
E;[ui(s7(6)), sZ(6-9), 0016;1 = Eilui(a;, s~ (6-;), 6)16;] for all a] € A;.
This is just the definition of a BNE. O

As aresult, if we can identify a weakly dominant strategy for each player in an auction, then a profile of such strategies
forms a BNE.

Example 63 (Second-price auction with reserve price). The seller sets reserve price r € R, then every bidder submits
a bid simultaneously.

25This is analogous to Definition 55. However, in Definition 55 we spelled out a weighted sum over 6_; € ®_; instead of writing an expectation.
This was possible since we focused on the case of a finite ® in that section.
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o If every bid is less than r, then no bidder gets the item and no one pays anything.

o If the highest bid is r or higher, then the highest bidder gets the item and pays either the bid of the second highest
bidder or r, whichever is larger. If several players tie for the highest bidder, then one of these high bidders is
chosen uniformly at random, gets the item, and pays the second highest bid (which is equal to her own bid).

We argue that s7(6;) = 6; is a weakly dominant strategy.

If 6; < r, then against any profile of opponent bids b_;, u;(6;, b—;, 6;) = 0 since i will never win the item from a bid less
than the reserve price. Yet, any other bid can only get payoff no larger than 0, since any bid that wins must be larger
than r, which is larger than i’s valuation.

If 6; > r, then profiles of opponent bids b_; may be classified into 3 cases.

Case 1: Highest rival bid is y > 6;. Then u;(6;, b_;, 6;) = 0, while any other bid either loses the item or wins the item at
a price of y, which can only lead to non-positive payoffs in the event of winning.

Case 2: Highest rival bid is y € [r, 6;). Then u;(b;, b_;,6;) = 6; —y > 0 for any b; > y (including b; = 6;), since all bids
higher than y lead to winning the item at a price of y. Bidding y leads to an expected payoff no larger than %(Gi -y)
from tie-breaking, which is worse than 6; — y. Bidding less than y loses the item and gets O utility.

Case 3: Highest rival bid is y < r. Then u;(b;, b—;, 6;) = 6; — r > 0 for any b; > r (including b; = 6;). Bidding less than
the reserve price r loses the item and gets O utility.

Therefore, we have verified that playing s7(6;) = 6; is optimal for type 6;, regardless of opponents’ bid profile. This

means bidding own valuation is weakly dominant. By Proposition 62, every player bidding own valuation is therefore
a BNE. ¢

3.2 The FOC approach. In the BNE of an auction, fixing bidder i with type 6;, we have:

57(0;) € argmax Ey , [6;H(b;, s*;(0-)) — Pi(b;, s (6-))] . )
b;eR,
So in particular,
6; € argmax Bq_, |6:Hi(s}(8), s" (0-)) = Pi(s;(B). 57 (6-)] 3)
0,€0;

because (3) restricts the optimization problem in (2) to the domain of 57(®;) C R,. Essentially, condition (3) converts
the problem of choosing an optimal bidding strategy to the problem of choosing a type to report. There could exist
other best responses, but we require truth telling to be one of them. More generally, the revelation principle implies
that for any BNE of any auction game, there exists an equivalent BNE of a direct revelation mechanism in which
players announce types as strategies, and, in equilibrium, report their true types.

Consider now the objective function of this second optimization problem,
Ui, 0:) = Bo_, [0:Hi(5; B0, 5° (0-)) = Pi(s; (B0, s (0-)| 4)

If it is differentiable (which will hold provided H;, P;, and the distribution F are “nice enough”) and valuation 6; € (0, 5)
is interior, then the first-order condition (FOC) of optimization implies

oU;
—(6;,6,) = 0.
00; )

In auctions without a weakly dominant strategy, sometimes this FOC can help identify a BNE by giving us a closed-
form expression of s7(6;) after manipulation.

Example 64 (First-price auction). Consider a first-price auction with two bidders. The two bidders’ types are dis-
tributed i.i.d. with 6; ~ U[O0, 1]. Each bidder submits a nonnegative bid and whoever bids higher wins the item and
pays her own bid. If there is a tie, then each bidder gets to buy the item at her bid with equal probability. It is
known that this auction has a symmetric BNE (s7, s5) where (i) s7(6;) is differentiable, strictly increasing in 6;; (ii) the
associated equation (4) is differentiable. Find a closed-form expression for s7(6;).

Solution:

In the symmetric BNE (s}, 53), the expected probability of player 1 winning the item by playing the BNE strategy
of type 6 is 8. This is because 55 1s strictly increasing and symmetric to s}, so that bidding s’f(@l) wins is exactly
when 6, < ), which happens with probability 8; since 6, ~ U[0,1]. At the same time, the expected payment for
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submitting the BNE bid of type 6; is @,-sl’.‘(@,-), because bidding sf(@i) wins with probability §; and pays sf(@i) in the
event of winning. The relevant optimization problem is therefore

max 9,’9,' - as;"(@l)
bel0,1]

FOC implies that
ds:
0; — s (0;) — 6;i—(6;) = 0.
5;(6) de,»( )
This is a first-order differential equation in 6; that holds for 6; € (0, 1), which yields

1
59,.2 +C = 6;57(6)). 5)

Evaluating at §; = 0 recovers®® the constant of integration C = 0. Therefore, 57(6;) = 6;/2 is the desired symmetric
BNE. ¢

4 Revenue Equivalence Theorem

4.1 The revenue equivalence theorem. While you may be familiar with statements like “first-price auction and second-
price auction are revenue equivalent” before taking this course, it is important to gain a more precise understanding of
the revenue equivalence theorem (RET). To see how a cursory reading of the RET might lead you astray, consider
the asymmetric second-price auction BNE from lecture, where bidder 1 always bids 6 and everyone else always bids
0, regardless of their types. The seller’s expected revenue is 0!

Strictly speaking, RET is not a statement comparing two auction formats, but a statement comparing two equilibria
of two auction formats. “Revenue” is an equilibrium property and an auction game might admit multiple BNEs with
different expected revenues.

So let a BNE s* of some auction game be given.?’ Let us define two functions G;, R; : ®; — R for each player i, so that
G(6;) and R;(#;) give the expected probability of winning and expected payment when bidding as though valuation
is @,-:

GiB) = By, |His; B0, s,(0-),
Ri®) = By | Pils} B, 5" (0-)]

The expectations are taken over opponents’ types. Importantly, G; and R; are dependent on the choice of BNE s*. If
we consider a different BNE of the same auction, then we will have a different pair (G, R).

To illustrate, consider the symmetric BNE we derived in the two-player auction in Example 64, where s7(6;) = 6;/2. It

should be intuitively clear that G,-(?),) =0, and R,-(@i) =0 - % = % We can also derive these expressions by definition:

R (0 6 b ! R
G1(91)=f H1 (—,—) d«gz:f ld92+f 0d92=91,
0 2°2 0 6
1 A o1 ) 1 2
A~ 6, 6, ' 6, 0
R(6)) = Pi|—,=|db = — db, + 0do, = —.
1(61) fo 1(2 2) b j(; 5 0 j;l b=

As we have seen in lecture, the celebrated RET is just a corollary of the following result:

Proposition 65. Fix a BNE s* of the auction game. Under regularity conditions, R;(6;) = foei xG(x)dx + Ri(0) for all
bidder i and type 6.

Proof. See lecture. m
This result expresses the expected payment of an arbitrary type of bidder i in a BNE as a function of: (i) expected

payment of the lowest type of bidder i in this BNE; (ii) the expected probabilities of winning for various types of
player i in this BNE. It then follows that:

26Even though the FOC only applies for interior 6; € (0, 1), continuity of s7 implies that equation (5) holds even at the boundary points. This is
sometimes called “value matching”.

27We can in fact define G; and R; for any arbitrary profile of strategies s, without imposing that it is a BNE. However, Proposition 65 only holds
when s is a BNE.
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Theorem 66 (Revenue equivalence theorem). Under regularity conditions, for two BNEs of two auctions such that
1. Gi() = G(6)) for all i and 0,
2. Ri(0) = R}(0) for all i,

then R;(6;) = R:(6;) for all i and 6.

This follows directly from Proposition 65. Since in a BNE, the expected payment of an arbitrary type is entirely
determined by the winning probabilities of different types and the expected payment of the lowest type, two BNEs
where these two objects match must have the same expected payment for all types.

Here are two examples where RET is not applicable due to G; and G; not matching up for two BNEs.

Example 67. In a second-price auction, the asymmetric BNE does not satisfy the conditions of RET when compared
to the symmetric BNE of bidding own valuation. In the asymmetric equilibrium where where bidder 1 always bids 6
and everyone else always bids 0, G;(8;) = 0 for all i # 1 and all 6;, since bidders other than 1 never win. Therefore, we
cannot conclude from RET that these two BNEs yield the same expected revenue. (In fact, they do not.) ¢

Example 68. In Example 63, we showed that bidding own valuation is a BNE in a second-price auction with reserve
price. When reserve price is » > 0, this BNE does not satisfy the conditions of RET when compared to the BNE
of bidding own valuation in a second-price auction without reserve price. In the former BNE, G;(6;) = 0 for any
0; € (0,r), whereas in the latter BNE these types have a strictly positive probability of winning the item. Therefore,
we cannot conclude from RET that these two BNEs in two auction formats yield the same expected revenue.

In fact, different reserve prices may lead to different expected revenues. Myerson (1981) tells you how to pick optimal
reserve prices to maximize the expected revenue of an auction. ¢

4.2 Using RET to solve auctions. Sometimes, we can use RET to derive a closed-form expression of the BNE strategy
profile s*.

Example 69. As in Example 64, consider a first-price auction with two bidder whose valuations are i.i.d. with
6; ~ U[0,1]. Assume this auction has a symmetric BNE where s}(6;) strictly increasing in 6;. Then this BNE is
revenue equivalent to the BNE of second-price auction where each player bids own valuation. To see this, since both
BNEs feature strategies strictly increasing in type, i of type 6; wins precisely when player —i has a type 6_; < 6,. That
is to say, G;(6;) = 6; = G;(6;). At the same time, the expected payment from type 0 is 0 in both BNEs — in particular,
the type O bidder in first-price auction never wins since bids are strictly increasing in type, so never pays anything.

But in the bid-own-valuation BNE of the second-price auction, R(6;) = 6; - (6;/2), where 6; is probability of being the
highest bidder and 6,/2 is expected rival bid in the event of winning. By RET, R;(6;) = 6; - (6;/2) also. In first-price
auction, i pays own bid s7(6;) whenever she wins, which happens with probability ;. Hence s7(6;) = R;(6,)/6; = %
This is the same as what we found using FOC in Example 64. ¢

While in the above example we used RET to verify a result we already knew from FOC, RET can also be used in lieu
of FOC to find BNEs. This can be particularly helpful when the differential equation from the FOC approach is harder
to solve.

Example 70 (December 2012 Final Exam). Suppose there are two risk-neutral potential buyers of an indivisible good.
It is common knowledge that each buyer i’s valuation is drawn independently from the same distribution on [0, 1] with
distribution function F(#) = 63, but the realizations of the ;s are private information. Calculate the expected payment
R;(6;) that a buyer with reservation price 6; makes in the unique symmetric equilibrium of a second-price auction.
Then, using the revenue equivalence theorem, find the equilibrium bid function in a first-price auction in the same
setting.

Solution:

In the second-price auction, it is a weakly dominant BNE to bid own valuation (regardless of underlying distribution).
In this BNE,
0; 0; 3 0;=0; 3
Ri(6) = f 0,f(0)) do; = f 0,(36%) do; = =6, =6
0 0 ! 4 /g=0 4
This symmetric BNE of second-price auction is revenue equivalent to any BNE in first-price auction where bid in-
creases strictly with own type. This is because in these BNEs, G;(6)) = G;(6;) = 6’? (since i of type 6; wins exactly
when —i is of type lower than 6;) and R;(0) = R;(0) = O (since type O never wins, so never pays). But in first-price

auction, R2(6;) = 57(6)G?(6;), so then s*(6;) = (ge;*) 16} = 36, I
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Example 71 (December 2016 Final Exam). Consider the high-bid auction with one indivisible good for sale assuming
the seller sets a reserve price of % There are two risk-neutral buyers whose valuations are drawn independently from
a distribution on [0, 1] with c.d.f. F() = ¢>. Find the buyers’ bid function in the symmetric BNE of this auction game.
Don’t forget to justify your answer.

Solution:

In Example 63, we showed that bidding own valuation is a BNE in a second-price auction with reserve price. Thus,
s°(0) = 6, 6 € [0, 1] is a symmetric BNE of the second-price auction with reservation price % (henceforth SPAr). We
conjecture that there is a symmetric BNE of the first-price auction with reservation price % (henceforth FPAr) with
s(6) = 0 when 6; < % and s(0) strictly increasing for 6 € [%, 1].

Note that in both BNE, type 6 = 0 pays 0 in expectation: R°(0) = R(0) = 0. Furthermore, in both BNE we have for the
expected probability of winning G°(0) = G() = 0,6 € [0, %) and G°(0) = G(H) = 6*,60 € [%, 1]. In all, the conditions
for applying RET are satisfied. We calculate for the case of the BNE of SPAr: R°(6) = 0 for 6 < % and for 6 > %

| 0 ! 2, 1
R°(0) = = 2ydy+ 2ydy + 0-2ydy==6"+—.
C)) fo 5 2ydy Ly ydy fe ydy =3 2
Meanwhile, we have R(6) = 6*s() for FPAr. Equating R°(6) = R(6), we get

: 1
O, if < 7

2 1 : 1
§0+ 34622 if 6 > 3.

s(0) =

We check by calculating, that indeed s'(8) = % - ﬁ > 0, which is true for 6 > % (precisely in the region where we
need it).

Finally, we check that the candidate is indeed a BNE of FPAr. It is obvious that types 6 < % don’t have any profitable
deviation: if they bid so as to have positive probability of winning the action they will have a negative expected payoff,
which is worse than 0 they are getting in equilibrium. We focus now on types 6 > % They wouldn’t deviate to
some b > s(1), which is the highest possible rival bid. If they were to bid b < %, then payoff would be zero, while
equilibrium payoff is
92.9_92.(z9+ L)z 1(93_ 1)
3 2462 3 8)’

which is positive for 8 > % Thus, it remains to consider deviations to b € (%, s(l)]. Deviating to such b is equivalent
to imitating some type in (%, 1]. This follows because the candidate equilibrium bidding function is strictly increasing
in that range. The payoff from imitating § € (% 1] is

2

929_92(-9+ ] )
3 2462

This is a strictly concave function in he (%, 1] and the FOC condition w.r.t. 0 is
206 - 26° = 0,

which implies § = 6. In all, no type 6 would want to deviate from s(6). )

5 Optional: The Universal Type Space

5.1 Higher orders of belief. We have considered a Bayesian game as a model of how a group of Bayesian players
confront uncertainty. Common prior assumption (CPA) is useful in simplifying analysis, yet it makes several as-
sumptions: (i) O is assumed to have a product structure; (ii) it is common knowledge that 6 is drawn according to u.
That is to say, everyone knows u, everyone knows that everyone else knows y, etc. What if we relax the common prior
assumption? That is to say, how should a group of Bayesian players in general behave when confronting uncertainty
0?

If there is only one player, then the answer is simple. The Bayesian player comes up with a prior u € A(®) through
introspection, then chooses some s; € S as to maximize ng@ u1(s1,0)du(6). The prior y is trivially a common prior,
since there is only one player.

37



However, in a game involving two players’®, the answer becomes far more complex. P1 is uncertain not only about
state of the world @, but also about P2’s belief over state of the world. P2’s belief matters for P1’s decision-making,
since P1’s utility depends on the pair (P1’s action, P2’s action) while P2’s action depends on his belief. As a Bayesian
must form a prior distribution over any relevant uncertainty, P1 should entertain not only a belief about state of the
world, but also a belief about P2’s belief, which is also unknown to P1.

To take a more concrete example, suppose there are two players Alice and Bob and the states of the world concern the
weather tomorrow, ® = {sunny, rain}. Alice believes that there is a 60% chance that it is sunny tomorrow, 40% chance
that it rains, so we say she has a first-order belief pgl)ice € A(®) with ,uxl)ice(sunny) = 0.6, ,ui\ll)ice(rain) = 0.4. Now
Alice needs to form a belief about Bob’s belief regarding tomorrow’s weather. Alice happens to know that Bob is a
meteorologist who has access to more weather information than she does. In particular, Alice believes Bob’s belief
about weather tomorrow is correlated with the actual weather tomorrow. Either it is the case that tomorrow will
be sunny and Bob believes today that it will be sunny tomorrow with probability 90%, or it is the case that tomorrow
will rain and today Bob believes it will be sunny with probability 20%. Alice assigns 60-40 odds to these two cases.

We say Alice has a second-order belief ,u(z) € A(O X A(®)), where ufl)ice is supported on two points (sunny, u(l) ),

Alice case 1

. 1 . 2 1 2 . 1 1 1
(rain, u(cale ,) with ufm)ice [sunny,uiai . 1] = 0.6, uid)ice [raln, uiai . 2] = 0.4. Here ,uiale , and ,uiale , are elements of A(®)
and ug)se ,(sunny) = 0.9 while pg)sez(sunny) = 0.2. We are not finished. Surely Bob, like Alice, also holds some

second-order belief. Alice is uncertain about Bob’s second-order belief, so she must form a third-order belief
ufﬂce € A(O X A(®) X A(O x A(0)))

that is a joint distribution over (i) the weather tomorrow; (ii) Bob’s first-order belief about the weather; (iii) Bob’s
second-order belief about the weather. Alice further needs a fourth-order belief, fifth-order belief, and so on.

We highlight the following features of the above example, which will be relevant to the subsequent theory on the
universal type space:

e Alice entertains beliefs of order 1, 2, 3, ... about the state of the world, where kth-order belief is a joint dis-
tribution over state of the world, Bob’s first order belief, Bob’s second-order belief, ..., Bob’s (k — 1)th-order
belief.

(1
Alice

marginalized to a distribution only over the weather also

e Alice’s second-order belief is consistent with her first-order belief, in the sense that whereas u

probability of 60% to sunny weather tomorrow, ,ufl)ice

says there is a 60% chance that it is sunny tomorrow.

assigns

e There is no common prior over the weather and no signal structure is explicitly given.

Harsanyi (1967) first conjectured that for each specification of states of the world ®, there corresponds an object
now called the “universal type space””, say T. Points in the universal type space correspond to all “reasonable”
hierarchies of first order belief, second order belief, third order belief, ... that a player could hold about ®. Furthermore,
there exists a “natural” homeomorphism

f:T > AOXT)

so that each universal type ¢ encodes a joint belief f(¢) over the state of the world and opponent’s universal type.
The universal type space is thus “universal” in the senses of (i) capturing all possible hierarchies of beliefs that might
arise under some signal structure about ®; (ii) putting an end to the seemingly infinite regress of having to resort to
(k + 1)th-order beliefs in order to model beliefs about kth-order beliefs, then having to discuss (k + 2)th-order beliefs
to describe beliefs about the (k + 1)th-order beliefs just introduced, etc.

5.2 Constructing the universal type space. Mertens and Zamir (1985) first constructed the universal type space.
Brandenburger and Dekel (1993) gave an alternative, simpler*’ construction, which we sketch here.

There are two players, i and j. The states of the world @ is a Polish space (complete, separable metric space). For
each Polish space Z, write A(Z) for the set of probability measures on Z’s Borel o-algebra. It is known that A(Z) is
metrizable by the Prokhorov metric, which makes A(Z) a Polish space of its own right.

Iteratively, define Xy = O, X; = © X A(Xp), Xo = O X A(Xp) X A(X)), etc. Each player has a first-order belief

pl(.l), ,uy) € A(Xp) that describes her belief about state of the world, a second-order belief #52)’ ,u(jz) € A(X,) that describes

28 All of this extends to games with 3 or more players, but with more cumbersome notations.

29Harsanyi initially called members of such space “attribute vectors”. The word “type” only appeared in a later draft after Harsanyi discussed his
research with Aumann and Maschler, who were also working on problems in information economics.

30Brandenburger and Dekel’s construction was based on a slightly different set of assumptions than that of Mertens and Zamir. For instance,
Mertens and Zamir assumed © is compact, but Brandenburger and Dekel required ® to be a complete, separable metric space. Neither is strictly
stronger.
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her joint belief about state of the world and opponent’s first order belief, and in general a kth-order belief yfk), ,u;k) €

AXi—1) = A(O X A(Xp) X ... X A(Xy—2)) that describes her joint belief about state of the world, opponent’s first order
belief, ... and opponent’s (k — 1)-th order belief. Since X, is Polish, each X is Polish.

2 ..) € [Ti2y A(Xp) = To. Note that there is a great

A hierarchy of beliefs is a sequence of beliefs of all orders, (,ugl), uo,
deal of redundancy within the hierarchy. Indeed, as ufk) is a distribution over the first k elements of @, A(Xy), A(X)), ...,

each /,zgk) can be appropriately marginalized to obtain a distribution over the same domain as /,zgkl) forany 1 < k' < k.
Call a hierarchy of beliefs consistent if each /11(.]‘) marginalized on all except the last dimension equals ,ugk_l) and
write 71 C Ty for the subset of consistent hierarchies. Then, Kolmogorov extension theorem implies for each

consistent hierarchy (pgl),,u@ ...), there exists a measure f(,ugl), ﬂgz)’ ...) over the infinite product ® X (H,‘f’zo A(Xk))

i b
such that f(pgl),,ugz), ...) marginalized to ® X ... X A(Xj-) equals ,ufb foreachk =0,1,2,... But ® x (H,‘:’:O A(Xk)) is
in fact ® X T, so that f associates each consistent hierarchy with a joint belief over state of the world and (possibly
inconsistent) hierarchy of the opponent. Further, this association is natural in the sense that f (,ugl), /1(2) ...) describes

i 9
)

the same beliefs and higher order beliefs about ® as the hierarchy (;151),,ui ,...). We may further verify the map

f:T1 — A(O x Ty) is bijective, continuous, and has a continuous inverse, so that it is a homeomorphism.

To close the construction, define a sequence of decreasing subsets of T,
Ty={teT : [fOIOXT;) =1}

That is, Ty is the subset of consistent types who put probability 1 on opponent’s type being in the subset T_;. Let
T = (" Ty, which is the class of types with “common knowledge of consistency”: i “knows™?! j’s type is consistent,
i “knows” that j “knows” i’s type is consistent, etc. This is the universal type space over ®. The map f can be
restricted to the subset 7" to given a natural homeomorphism from 7 to A(® x T).
5.3 Bayesian game as a belief-closed subset of the universal type space. Here we discuss how the Bayesian game
model relates to the universal type space.
Take a common prior Bayesian game B = (N, (®,);en, (A)ien, (Ui)ien, ) and suppose for simplicity there are two
players, i and j. Each 8] € ©; corresponds to a unique point in the universal type space T over ®, which we write
as 1(67) € T. To identify #(6}), note that player i of the type 6 has a first-order belief u}l) [67] € A(®), such that for
E CO,

WP 1(E) = u(E16))

where u(-|67) € A(®) is the conditional distribution on © derived from the common prior, given that 6; = 6.
Furthermore, 67 also leads to a second-order belief ,uEZ)[O;‘] € A(® x A(®)), where for E; C O, E; C A(®),

9;‘)

here ,ui.l) : ©®; — A(®) is defined analogously to ,uﬁl). One may similarly construct the entire hierarchy #(6;) =

PP (Ey X E)) = ({0 € ©: 0 € Ey and 4[9)] € En)

(ygk)[é);‘]),‘:’:] and verify that it satisfies common knowledge of consistency. Hence, #(6;) € T. This justifies calling
elements of ®; “types” of player i, for indeed they correspond to universal types over the states of the world.

The set of universal types present in the Bayesian game B, namely
T(B) = {6)) : 6; € O k € (i, j}}

is a belief-closed subset of 7. That is, each t € T'(B) satisfies [ f(#)] (@ x T'(B)) = 1, putting probability 1 on the event
that opponent is drawn from the set of universal types 7'(B).

31More precisely, “knows” here means “puts probability 1 on”.
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Economics 2010a > Section 5: Dynamic Games (I)* 11/21/2021

' (1) Subgame-perfect equilibrium; (2) Infinite-horizon games and one-shot deviation; '

' (3) Rubinstein-Stahl bargaining; (4) Introduction to repeated games; (5) Folk theorem for infinitely repeated games

TF: Chang Liu (chang_liu@g.harvard.edu)

1 Subgame-Perfect Equilibrium

1.1 Nash equilibrium in finite-horizon games. Recall the definition of a finite-horizon extensive form game and the
definition of a strategy in extensive form games from Section 1.

Definition 72. A (finite-horizon) extensive form game I" consists of:

1. A (finite-depth) tree with vertices V and terminal vertices Z C V.

2. A (finite) collection of players N = {1, 2, ..., n}.

3. A player function J : V\Z — N U {c}. Denote V; = {v : J(v) = j} for each j € N U {c}.
A set of available moves M, foreach j € Nandv € V;.

A probability distribution f(-|v) over v’s children for each v € V.

A (Bernoulli) utility function u; : Z — R for each j € N.

N o ok

An information partition 7 ; of V; for each j € N, whose elements are information sets /; € 1 ;. It is required
that M;, = M;,» whenever v,V € [;.

Definition 73. In an extensive form game, a pure strategy for player j is a function s; : 7; — .z, M, so that
sj(I;) € My, for each I; € I ;. Write S ; for the set of all pure strategies of player j. A mixed strategy for player j is an
element o; € A(S ).

A pure strategy profile s induces a distribution over terminal vertices Z, which we write as p(:|s) € A(Z), where the
randomness only comes from the moves of nature. Hence we may define, for each player i, U; : S — R where

Ui(si, s21) = Eoopiys) [1i(2)]

That is, the extensive game payoff to player i is defined as her expected utility from terminal vertices, according to her
Bernoulli utility #; and the distribution over terminal vertices induced by the strategy profile.

More generally, a mixed strategy profile o also induces a distribution over terminal vertices Z, where now the random-
ness comes from both the moves of nature and the (independent) randomization of the players. We write p(:|o") € A(Z)
for the implied distribution over terminal vertices, and extend the domain of U; to [;en A (Sk), where

Ui(oi, 0-1) = Epepgio [ui(2)].

Note that we always assume that nature randomizes independently from the players.

A Nash equilibrium in extensive form game is defined in the natural way: a strategy profile where no player has a
profitable unilateral deviation, where potential deviations are different extensive form game strategies.

Definition 74. A Nash equilibrium in an extensive form game is a strategy profile o* with U;(c},07,) = Ui(s},07))
forall s} € §;.

Example 75 (The ultimatum game??). Figure 7 shows the game tree of an ultimatum game, I'. It models an interaction
between players 1 and 2 who must split two identical, indivisible items. Player 1 proposes an allocation. Then, player
2 Accepts or Rejects the allocation. If the allocation is accepted, it is implemented. If it is rejected, then neither player
gets any of the good.

3 Figure 13 is adapted from Osborne and Rubinstein (1994).
33The ultimatum game is an experimental economics game in which two parties interact anonymously and only once, so reciprocation is not an
issue. The first player proposes how to divide a sum of money with the second party. If the second player rejects this division, neither gets anything.
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(2,0) (0,0) 1,1 (0,0) 0,2) (0,0)

Figure 7: The ultimatum game in extensive form.

Player 1 moves at the root of the game tree. Her move set at the root is {0, 1,2}, which correspond to giving O, 1, 2
units of the good to player 2. Regardless of which action player 1 chooses, the game moves to a vertex where it is
player 2’s turn to play. His move set at each of his three decision vertices is {A, R}, corresponding to accepting and
rejecting the proposed allocation.

The strategy profile s7(2) = 2, s3(0) = s5(1) = R, s3(2) = A is a Nash equilibrium. Certainly player 2 has no profitable
deviations since U,(s}, s;) = 2, which is the highest he can hope to get in this game. As for player 1, she also has
no profitable unilateral deviations, since offering O or 1 to player 2 leads to rejection and no change in her payoff. By
the way, this is why we insist that a strategy in an extensive form game specifies what each player would do at each
information set, even those information sets that are not reached when the game is played. What player 2 would have
done if offered O or 1 is crucial in sustaining a Nash equilibrium in which player 1 offers 2. ¢

1.2 Subgames and subgame-perfect equilibrium. In some sense, the Nash equilibrium of Example 75 is artificially
sustained by a non-credible threat. Player 2 threatens to reject the proposal if player 1 offers 1, despite the fact that
he has no incentive to carry out the threat if player 1 really makes this offer. This threat does not harm player 2’s
payoff in the game I, since player 2°s unoptimized decision vertex is never reached when the strategy profile (s7, s3)
is played — it is “off the equilibrium path”.

Whether or not strategy profiles like (s7, s5) make sense as predictions of the game’s outcome depends on the availabil-
ity of commitment devices. If at the start of the game player 2 could somehow make it impossible for himself to accept
the even-split offer, then this Nash equilibrium is a reasonable prediction. In the absence of such commitment devices,
however, we should seek out a refinement of Nash equilibrium in extensive form games to rule out such non-credible
threats.

We begin with the definition of a subgame.

Definition 76 (Subgame). In a finite-horizon extensive form game I, any vertex x € V\Z such that every information
set is either entirely contained in the subtree starting at x or entirely outside of it defines a subgame, I'(x). This
subgame is an extensive form game inherits the payoffs, moves, and information structure of the original game I" in
the natural way.

Example 77 (The ultimatum game). The ultimatum game in Example 75 has 4 subgames: I'(@) (which is just I'), as
well as I'(0), I'(1), ['(2). We sometimes call I'(0), I'(1), I'(2) the proper subgames. ¢

Definition 78 (Subgame-perfect equilibrium). A strategy profile o* of I is called a subgame-perfect equilibrium
(SPE) if for every subgame I'(x), o restricted to I'(x) forms a Nash equilibrium in I'(x).

Note that we can rewrite mixed strategies as behavioral strategies in games with perfect recall. Then, for each player,
the restriction of the strategies to a subgame is just the collection of the behavioral strategies corresponding/relevant
to information sets in the subgame.

I'(@) =T is always a subgame since the root of the game tree is always in a singleton information set. Therefore, every
SPE is an NE, but not conversely.

Example 79 (The ultimatum game). The NE (s}, s5) from Example 75 is not an SPE, since (s}, s3) restricted to the
subgame I'(1) is not an NE. However, the following is an SPE: s](@) = 1, s5(0) = R, s5(1) = s5(2) = A. It is easy
to see that restricting (s7, s3) to each of the subgames I'(0), I'(1), I'(2) forms an NE. Furthermore, (s7, s7) is a NE in
['(@) =T. Player 1 gets U;(s, s3) = 1 under this strategy profile, while offering 0 leads to rejection and a payoft of 0,
offering 2 leads to acceptance but again a payoft of 0. For player 2, changing s5(0) and s3(2) do not change payoff in
T, since these two vertices are never reached. Changing s3(1) from A to R hurts payoff. ¢
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1.3 Backward induction. Backward induction is an algorithm for finding SPE in a finite-horizon extensive form
game of perfect information. The idea is to successively replace subgames with terminal vertices corresponding to
SPE payoffs of the deleted subgames.

Start with a non-terminal vertex furthest away from the root of the game, say v. Since we have picked the deepest
non-terminal vertex, all of J(v)’s moves at this vertex must lead to terminal vertices. Choose one of J(v)’s moves, m”*,
that maximizes her payoff in I'(v), then replace the subgame I'(v) with the terminal vertex corresponding to m*. Repeat
this procedure, working backwards from the vertices further away from the root of the game. Eventually, the game
tree will be reduced to a single terminal vertex, whose payoff will be an SPE payoff of the extensive form game, while
the moves chosen throughout the deletion process will form a SPE strategy profile.

Example 80. Figure 8 through 12 display the process of backward induction.

1

5,3) (0,4) (0,0) (1,4) (2,2) (1,3) (1,4) (3,0)

Figure 8: An extensive form game.

Backward induction replaces subgames with terminal nodes associated with the SPE payoffs in those subgames. Here
is the resulting game tree after one step of backward induction.

1

(0,0) (1,4) (2,2) (1,3) (1,4) (3,0)

Figure 9: The resulting game tree after one step of backward induction.

Proceed similarly, after eliminating all nodes at depth 3 in the original tree, the results look as follows:
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(5,3) (1,4) (2,2) (3,0

Figure 10: Backward induction in progress. All nodes at depth 3 in the original tree have been eliminated.

‘We can continue:

(1,4) 2,2)

Figure 11: Backward induction in progress. Only nodes with depth 1 remain.
And continue again:

2.2

Figure 12: Backward induction finds the unique SPE payoff in this game.

This completes backward induction, and we have found the unique SPE of the original game, s*: 57(@) = R, s7(L, L) =
L,si(L,R) =R, s](R,L) = L, s](R,R) = R, s5(L) = R, s5(R) = L.

If u;(z) # u;(z') for every i and z # 7/, then backward induction finds the unique SPE of the extensive form game. Oth-
erwise, the game may have multiple SPEs and backward induction may involve choosing between several indifferent
moves. Depending on the moves chosen, backward induction may lead to different SPEs.

Example 81 (From MWG?*). Consider a game in which the following simultaneous-move game is played twice. The
players observe the actions chosen in the first period before they play in the second period. What are the pure strategy
SPEs of this game?

b by b3
ap | 10,10 | 2,12 | 0,13
a | 12,2 | 5,5 | 0,0
az | 13,0 | 0,0 1,1

Solution:

The pure strategy Nash equilibria of the one-shot game are (ay, b>) and (as, b3). Thus any pure strategy SPE involves
playing either of these in the second period. We conjecture the following four classes of SPE:

1. Players plays (a;, b;) in both periods, i € {2, 3}.

34This is a prelude to repeated games, which are discussed later.
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2. Players plays (a;, b;) in the first period and (a;, b;) in the second period, i, j € {2,3} and i # j.
3. Player 1’s strategy: play a;, i € {1,2,3} in period 1; play a, in period 2 if player 2 played b; in period 1,
otherwise play as.
Player 2’s strategy: play b, in period 1; play b, in period 2 if player 2 played a; in period 1, otherwise play bs.
4. Player 2’s strategy: play b;, i € {1,2,3} in period 1; play b, in period 2 if player 2 played a; in period 1,
otherwise play bs.
Player 1’s strategy: play a; in period 1; play a, in period 2 if player 2 played b; in period 1, otherwise play as.
Classes 1 and 2 are easy to check. To see that classes 3 and 4 are indeed SPEs, note that by deviating a player loses 4

in the second period and no player can gain more than 3 in any of the described strategy profiles. Equilibrium classes
3 and 4 are implemented through ‘punishment for deviations’. ¢

2 Infinite-Horizon Games and One-Shot Deviation

2.1 Infinite-horizon games. So far, we have only dealt with finite-horizon games. These games are represented by
finite-depth game trees and must end within M turns for some finite M. But games such as the Rubinstein-Stahl
bargaining are not finite-horizon, for players could reject each other’s offers forever. We modify Definition 82 to
accommodate such infinite-horizon games. For simplicity, we assume the game has perfect information and no chance
moves.

Definition 82. An extensive form game with perfect information and no chance moves I" consists of:

1. A (possibly infinite-depth) tree with vertices V and terminal vertices Z C V.
2. A (finite) collection of players N = {1, 2, ..., n}.
3. A player function J : V\Z — N. Denote V; = {v : J(v) = j} foreach j € N.

4. A set of available moves M, for each j € N and v € V;. Each move in M}, is associated with a unique child of
v in the tree.

5. A set of infinite histories H*, where each h/* € H™ represents an infinite-length path (vg, vy, ...) in the tree.

6. A (Bernoulli) utility function u; : ZU H* — R for each j € N.

When an infinite-horizon game is played, it might end at a terminal vertex (such as when one player accepts the other’s
offer in the bargaining game), or it might never reach a terminal vertex (such as when both players use a strategy
involving never accepting any offer in the bargaining game). Therefore, each player must have a preference not only
over the set of terminal vertices, but also over the set of infinite histories. In the bargaining game, for instance, it is
specified that u;(h™) = O for any h™ € H®, j = 1,2, that is to say every infinite history in the game tree (i.e., never
reaching an agreement) gives 0 utility to each player.

Many definitions from finite-horizon extensive form games directly translate into the infinite-horizon setting. For
instance, any nonterminal vertex x in the perfect-information infinite-horizon game defines a subgame I'(x). NE is
defined in the obvious way, taking into account distribution over both terminal vertices and infinite histories induced
by a strategy profile. SPE is still defined as those strategy profiles that form an NE when restricted to each of I'’s
(possibly infinitely many) subgames.

2.2 One-shot deviation principle. It is often difficult to verify directly from definition whether a given strategy profile
forms an SPE in an infinite-horizon game. Indeed, given an SPE candidate s* of game I', we would have to consider
each subgame I'(x), which is potentially an infinite-horizon extensive form game of its own right, and ask whether
player i can improve her payoff in I'(x) by choosing a different extensive form game strategy 5., modifying some or all
of her choices at various vertices in V; relative to s}. This is not an easy task since i’s set of strategies in I'(x) is a very
rich set. The one-shot deviation principle says for extensive form games satisfying certain regularity conditions, we
need only check that i does not have a profitable deviation amongst a very restricted set of strategies in each subgame
['(x), namely those that differ from s only at x.

Definition 83 (Continuous at infinity). I" is continuous at infinity if for all £ > 0, there exists an integer T such that
for every player i and any two infinite histories 4, h* € H™ that share the first 7 nodes, |u,~(h°°) - ui(h‘x’)| <e.
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Theorem 84 (One-shot deviation principle). If I is continuous at infinity, then a strategy profile s* is an SPE of T if
and only if for every player i, every x € V; and every strategy s, such that s}(v) = s;(v) at every v # x,

Ui(s;, sZilx) > Ui(si, sZ1x)
where U;(:|x) denotes the payoff of i in subgame I'(x).

Example 85 (A game not continuous at infinity). Consider an infinite-horizon one-player game, where the player
chooses Yes or No in each stage. She gets payoff 1 if she chooses Y forever, and 0 if she ever chooses N. Always N is
not SPE, yet it satisfies the condition of the one-shot deviation principle. This is because the game is not continuous
at infinity. For any integer 7', consider two infinite histories that share the first T nodes, h* = {Always Y}, hi® =
{Always Y except at the (T + 1)th node}. We have |u;(h°°) - u;(iz‘”)| = 1. This example shows that continuity at infinity
is crucial for one-shot deviation principle to hold. ¢

Continuity at infinity is satisfied by all finite-horizon extensive form games, as well as all infinite-horizon games
studied in lecture, including bargaining and repeated games. Under this condition, to verify whether s* is an SPE, we
only need to examine each subgame I'(x) and consider whether player J(x) can improve her payoff in I'(x) by changing
her move only at x (a “one-shot deviation™).

3 Rubinstein-Stahl Bargaining

3.1 Bargaining as an extensive form game. The Rubinstein-Stahl bargaining game, or simply “bargaining game”*

for short, is an important example of infinite-horizon, perfect-information extensive form game. It is comparable to
the ultimatum game from Example 75, but with two important differences: (i) the game is infinite-horizon, so that
first rejection does not end the game. Instead, players alternate in making offers; (ii) the good that players bargain over
is assumed infinitely divisible, so that any allocation of the form (x, 1 — x) for x € [0, 1] is feasible.

t=2
(6x2,6(1 — x2))

Figure 13: Part of the bargaining game tree, showing only some of the branches in the first two periods. The root @
has (uncountably) infinitely many children of the form (x',1 — x!) for x! € [0, 1]. At each such child, player 2 may
play R or A. Playing A leads to a terminal node with payoffs (x!, 1 — x'), while playing R continues the game with
player 2 to make the next offer.

Let’s think about what a strategy in the bargaining game looks like. Figure 13 shows a sketch of the bargaining
game tree. Player 1’s strategy specifies s,(@), that is to say what player 1 will offer at the start of the game. For
each x' € [0, 1], player 2’s strategy specifies so((x', 1 — x')) € {A, R}, that is whether he accepts or rejects a period
1 offer of (x',1 — x'). In addition, player 2’s strategy must also specify s»((x',1 — x'),R) for each x' € [0, 1],
that is what he offers in period ¢t = 2 if he rejected player 1°’s offer in ¢+ = 1.® This offer could in principle could
depend on what player 1 offered in period t = 1. Now for every x!, x> € [0, 1], player 1’s strategy must specify

33Not to be confused with axiomatic Nash bargaining, which we will study in Jerry’s part in 2010b.

36Remember, a strategy for j is a complete contingency plan that specifies a valid move at any vertex in the game tree where it is j’s turn to play,
even those vertices that would never be reached due to how j plays in previous rounds. Even if player 2’s strategy specifies accepting every offer
from player 1 in ¢ = 1, player 2 still needs to specify what he would do after a history of the form ((x!, 1 — x"), R) for each x! € [0, 1].
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s1((x', 1= x1), R, (x%,1 — x?)) € {A, R}, which could in principle depend on what she herself offered in period 7 = 1, as
well as what player 2 offered in the current period, (2,1 — x?).

3.2 Asymmetric bargaining power. Here is a modified version of the bargaining game that introduces asymmetric
bargaining power between the two players.

Example 86. P1 gets to make offers in periods 3k + 1 and 3k + 2, while P2 gets to make offers in periods 3k + 3. As in
the usual bargaining game, reaching an agreement of (x, 1 —x) in period ¢ yields the payoff profile (6" - x, 6" - (1 - x)).
If the players never reach an agreement, then payoffs are (0, 0).

Consider the following strategy profile: whenever P1 makes an offer in period 3k + 1, she offers (

1+6° 5
14+6+62° 1+5+6%

) Whenever P2 responds to an offer in period 3k + 1, he accepts if and only if he gets at least

1+6 P )

1+6+62° 1+6+6% )°

Whenever P1 makes an offer in period 3k + 2, she offers ( ) Whenever P2 makes an offer, he offers
546> 1

( 1+g+62 > T+6+02

Whenever P2 responds to an offer in period 3k + 2, he accepts 1f and only if he gets at least

1+6+62
T 6 s Whenever Pl

responds to an offer, she accepts if and only if she gets at least 1+5+52 You may verify that this verbal description
indeed defines a strategy profile that plays a valid move at every non-terminal node of the bargaining game tree.

We use the one-shot deviation principle to verify that this strategy profile is SPE. By the principle, we need only
ensure that in each subgame, the player to move at the root of the subgame cannot gain by changing her move only at
the root. Subgames of this bargaining game may be classified into six families:

1. Subgame starting with P1 making an offer in period 3k + 1.
2. Subgame starting with P1 making an offer in period 3k + 2.
3. Subgame starting with P2 making an offer in period 3k + 3.
4. Subgame starting with P2 responding to an offer (x, 1 — x) in period 3k + 1.
5. Subgame starting with P2 responding to an offer (x, 1 — x) in period 3k + 2.
6. Subgame starting with P1 responding to an offer (x, 1 — x) in period 3k + 3.

We consider these six families one by one, showing in no subgame is there a profitable one-shot deviation. By the
one-shot deviation principle, this shows the strategy profile is an SPE.

1. Subgame starting with P1 making an offer in period 3k + 1.

ot ; 3k, _1+6
Not deviating gives P1 67+ ; +§++ 5’ .
to P1. Offering P2 less than 1+§+§7

will accept. Therefore, this deviation gives P1 utility
one-shot deviation at the start of this subgame.

Offering P2 more than —%— leads to acceptance but yields strictly less utility

1+6+62
leads to rejection. In the next period, P1 will offer herself 1+5° " which P2

1+6+62°
2
kL. ligf = < &3 . 1+1;f§2' So we see P1 has no profitable

2. Subgame starting with P1 making an offer in period 3k + 2.

148>
1+6+62

Not deviating gives P1 §**+! . L0
utility to P1. Offering P2 less than 5 15 leads to rejection. In the next period, P2 will offer P1 ]f:;f =, Which

P1 will accept. Therefore, this deviation gives P1 utility §*+? - (250 < g3+1. L0 g4 we see P1 has no
profitable one-shot deviation at the start of this subgame.

Offering P2 more than leads to acceptance but yields strictly less

3. Subgame starting with P2 making an offer in period 3% + 3.

Qo : 3k+2 1
Not deviating gives P2 ¢ CTeoid

5+6%
1+6+6%

Offering P1 more than

leads to acceptance but yields strictly less

utility to P2. Offering P1 less than lfgﬁz leads to rejection. In the rziext period, P1 will offer P2 5+ Trss» Which
P2 will accept. Therefore, this deviation gives P2 utility 6** - —— < **2. —L=_ So we see P2 has no

profitable one-shot deviation at the start of this subgame.

4. Subgame starting with P2 responding to an offer (x, 1 — x) in period 3% + 1.

Ifl-x< 13 5 T5557 > the strategy for P2 prescribes rejection. In the next period, P1 will offer P2 - 5 Trsr5 Which P2
will accept, giving P2 a utility of §3*! . On the other hand, the deviation of accepting 1 — x in the current

1+6+62
period gives utility k. (1-x) <k ﬁ = k. T 5 —57- 50 P2 has no profitable one-shot deviation.
If1-x2> m, the strategy for P2 prescribes acceptance, glvmg P2 a utility of 6% - (1 - x) > &* - ; +§152'

If P2 rejects instead, then in the next period P1 will offer P2 - 6 T Which P2 will accept, giving P2 a utility of

gk < 6% . 2 So P2 has no profitable one-shot deviation.

1+(5+(52 T+o6+62°
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5. Subgame starting with P2 responding to an offer (x, 1 — x) in period 3k + 2.

Ifl-x< ﬁ, l+6+62’WhiCh
P1 will accept, giving P2 a utility of §3%*2 . T 5 —. On the other hand, the deviation of accepting 1 — x in the
current period gives P2 utility 6**! - (1 - x) < ! . 2= = §%+2. So P2 has no profitable one-shot
deviation.

If1-x2> (;5 7, the strategy for P2 prescribes acceptance, giving P2 utility of **1 . (1 — x) > ¢3+1.

P2 rejects instead, then in the next period P2 will offer himself ——

3k+2 1 3k+1
of § o5 = 0

the strategy for P2 prescribes rejectlon In the next period, P2 will offer himself

1+6+67 .

l+<5+62 If
T 6 T3> Which P1 will accept, giving P2 a utility

W < &1 (1 - x). So P2 has no profitable one-shot deviation.

6. Subgame starting with P1 responding to an offer (x, 1 — x) in period 3k + 3.

Ifx< liST, the strategy for P1 prescribes1 r;:Jection In the next period, P1 will offer herself
P

. 3k+3
will accept, giving P1 a utility of 6> - T3040

period gives P1 utility §3*2 - (x) < 6°%+2 . ligﬁz = k3. 1+I;f62' So P1 has no profitable one-shot deviation.

1+ 5+ 52 , which P2
On the other hand, the deviation of accepting x in the current

If x > ]igi =, the strategy for P1 prescribes acceptance, giving Pl utility of §**2 - (x) > 6+ . & If P1

rejects instead, then in the next period P1 will offer herself 5 - 52 , which P2 will accept, giving P1 a utility of

o33 . 0 < 53%+2. (). So P1 has no profitable one-shot deviation.

1+6 5
1+6+6%° 1+6+62

P1’s SPE payoff improves when she has more bargaining power.

Along the equilibrium path, P1 offers ( ) int = 1 and P2 accepts. This is a better outcome for P1 than in

the symmetric bargaining game where P1 gets + 5-

One can also show that the payoffs of this SPE are the unique SPE payoffs of the game. The proof idea is to consider
three bargaining games: I'j, I'; and I';. T'j is the bargaining game exhibited in the statement of the problem. I’ is
the bargaining game, where P1 makes an offer in period one, P2 makes an offer in period two and if both reject the
bargaining game I'; is played. I's is the bargaining game where P2 makes the first offer in period one and if P1 rejects
the bargaining game I'; is played.

Define the minimal, maximal SPE payoffs for both players in all three bargaining games and use an analysis similar
to lecture to find necessary inequalities these minimal, maximal SPE payoffs have to satisfy. Ultimately, one arrives
at ‘enough’ inequalities so that a combination of them gives a tight characterization showing that the minimal and
maximal SPE payoffs for both players are equal to the payoffs in the SPE considered in this example. ¢

4 Introduction to Repeated Games

4.1 What is a repeated game? Many of the normal form and extensive form games studied so far can be viewed as
models of one-time encounters. After players finish playing Rubinstein-Stahl bargaining or high-bid auction, they
part ways and never interact again. In many economic situations, however, a group of players may play the same
game again and again over a long period of time. For instance, a customer might approach a printing shop every
month with a major printing job. While the printing shop has an incentive to shirk and produce low-quality output
in a one-shot version of this interaction, in a long-run relationship the shop might never shirk as to avoid losing the
customer in the future. In general, repeated games study what outcomes can arise in such repeated interactions.
Formally speaking, repeated games (with perfect monitoring®’) form an important class of examples within extensive
form games with finite- or infinite-horizon, depending on the length of repetition.

Definition 87 (Finitely repeated game). For a normal form game G = (N, (Ai)ken, ()ren) and a positive integer 7,
denote by G(T') the extensive form game where G is played in every period for T periods and players observe the
action profiles from all previous periods. G is called the stage game and G(T') the T-times repeated game. Terminal
vertices of G(T) are of the form AT = (a',d?, ...,a") € AT and payoff to player i at such a terminal vertex is

T
Uh") = ) wi(a).

t=1

A pure strategy for player i maps each non-terminal history of action profiles to a stage game action,

T-1
S; ¢t UAk — A,
k=0

37 That is to say, actions taken in previous periods are common knowledge. There exists a rich literature on repeated games with coarser monitoring
structures — for instance, all players observe an imperfect public signal of each period’s action profile, or each player privately observes such a signal
— and folk theorems in these generalized settings (Fudenberg, Levine, and Maskin, 1994; Kandori and Matsushima, 1998; Sugaya, Forthcoming).
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Definition 88 (Infinitely repeated game). For a normal form game G = (N, (Ap)ien, (Ux)ren) and 6 € [0, 1), denote
by G%(c0) the extensive form game where G is played in every period for infinitely many periods and players act like
exponential discounters with discount factor 6. G%(e0) is called the infinitely repeated game with discount factor §.
An infinite history of the form 4™ = (a',d?, ...,) € A* gives player i the payoff

Uh™) = )" 6" uida).

t=1

A pure strategy for player i maps each finite history of action profiles to a stage game action,

00

S;: UA/‘ — A,

k=0

A strategy for player i in G(T') or G°(c0) must specify a valid action of the stage game G after any non-terminal history
(@', ...,d") € A*, including those histories that would never be reached under i’s strategy. For example, even if P1’s
strategy in repeated prisoner’s dilemma is to always play D, she still needs to specify s;((C, C), (C, C)), that is what
she will play in period 3 if both players cooperated in the first two periods.

As defined above, our treatment of repeated games focuses on the the simplest case where payoffs in period ¢ are
independent of actions taken in all previous periods. This rules out, for instance, investment games where players
choose a level of contribution every period and the utility in period ¢ depends on the sum of all accumulated capital up
to period .

When discussing repeated games, we are often interested in the “average” stage game payoff under a repeated game
strategy profile. The following definitions are just normalizations: they ensure that the (finite or infinite) constant
action profile (a, a, . . . ) leads to an average payoff of u;(a).

Definition 89 (Average payoff). In G(T), the average payoff to i at a terminal vertex 1’ = (a',a?, ...,a") € AT is

_ 1 <&
Uih") = = ) wila).

t=1

In G°(0), the (discounted) average payoff to i at the infinite history 4™ = (a',d?,...,) € A% is
Ti(h™) = (1-8) )6 wi(a).
=1

4.2 Some immediate results. The first result is immediate from backward induction.

Proposition 90. [f G has a unique NE, then for any finite T, the repeated game G(T) has a unique SPE. In this SPE,
players play the unique stage game NE after every non-terminal history.

Proof. Let o be an SPE of G(T'). For any history h7~! of length T — 1, o*(h"~") must be the unique NE of G. Else,
some player must have a strictly profitable deviation in the last period T. So we deduce o™ plays the unique NE of G
in period T regardless of what happened in previous periods.

But this means o*(h’~2) must also be the unique NE of G for any history 2”2 of length T — 2. otherwise, consider the
subgame starting at 1’ 2. If o*(h” ~2) does not form an NE, some player i can improve her payoff in the current period
by changing her action in period 7' — 1, and furthermore this change does not affect her payoff in future periods, since
we have argued the unique NE of G will be played in period T regardless of what happened earlier in the repeated
game. So we have found a strictly profitable deviation for i in the subgame, contradicting the fact that o* is an SPE.

Hence, we have shown o* plays the unique NE of G in the last two periods of G(T'), regardless of what happened
earlier. Continuing this argument shows the unique NE of G is played after any non-terminal history. O

The second result requires some additional definitions.

Definition 91 (Feasible payoffs). Given a normal form game G = (N, (Ap)ren, (Ur)ren), the set of feasible payoffs is
defined as co({u(a) : a € A}) C R", where co(-) is the convex hull operator.
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These are the payoffs that can be obtained if players use a public randomization device to correlate their actions.
Specifically, as every v € co({u(a) : a € A}) can be written as a weighted average v = Y,;_, pu(a'”) where p; > 0,
Si_; pe = 1 and @' € A for each ¢, one can construct a correlated strategy profile where all players observe a public
random variable that realizes to £ with probability p,, then player i plays al(() upon observing £. The expected payoff
profile under this correlated strategy profile is v.

This public randomization device will be used in the construction of the equilibrium in two ways:

1. To realize specific feasible payoffs in certain periods as described above (on or off equilibrium path). It follows
from the optimization property of the equilibrium that agents will follow the prescriptions of the public random-
ization device (i.e., the incentives are given by the continuation play encoded in the equilibrium strategies).

2. To construct SPEs which have as payoffs a mixture of the payoffs from two (or more) SPEs. An illustrative
example is as follows: imagine that we have two SPE profiles, o and o®, which give SPE payoff profiles
U(o™") and U(c"®). Then, given A € (0, 1), agents can achieve the SPE payoft profile AU(c") + (1 = )U(c"?)
by using the public randomization device and replicating a toss of coin with heads probability of A at time ¢ = 0
before play starts: if heads up, then play SPE oV, otherwise play c®. This is an SPE, albeit now constructed
by public randomization, because no matter what the public outcome of the coin is, the agents will follow its
prescription due to the SPE property of o) and o®.

Definition 92 (Minimax payoff). In a normal form game G = (N, (Ai)ien, (Ui )ren), player i’s minimax payoff is
defined as

v, = min maxu(a;,a;).

- a_i€A(A_}) a;€A;
Definition 93 (Individually rational). In a normal form game G = (N, (Ap)ken, (Ui )ren), call a payoft profile v € R”
individually rational (IR) if v; > v, for every i € N. Call v strictly individually rational if v; > v, for every i € N.

Two technical remarks which you can skip:

1. The outer minimization in minimax payoff is across the set of correlated strategy profiles of —i. As demon-
strated in the coordination game with an eavesdropper (Example 32), the correlated minimax payoff of a player
could be strictly lower than her independent minimax payoff (when opponents in —i play independently mixed
actions). This distinction is not very important for this course, as we will almost always consider two-player
stage games when studying repeated games, so that the set of “correlated” strategy profiles of —i is just the set
of mixed strategies of —i.

2. We claimed to have described repeated games with perfect monitoring in Definitions 87 and 88, but the mon-
itoring structure as written was less than perfect. Players only observe past actions and cannot always detect
deviations from mixed strategies or correlated strategies, so in particular they do not know for sure if every-
one is faithfully playing a mixed or correlated minimax strategy profile against i.*® To remedy this problem, we
can assume that every coalition (including singleton coalitions) observes a correlating signal at the start of every
period, which they use to implement correlated strategies and mixed strategies. Furthermore, the realizations
of such correlating signals become publicly known the end of each period, so that even correlated strategies
and mixed strategies are “observable”. This remark is again not very important for this course, for the minimax
action profile turns out to be pure in most stage games we examine. In addition, Fudenberg and Maskin (1986)
showed that their folk theorem continues to hold, albeit with a modified proof, even when players only observe
past actions and not the realizations of past correlating devices.

Proposition 94. Suppose o* is a Nash equilibrium for G(T) or G°(c0). Then the average payoff profile associated
with o is feasible and IR for the stage game G.

Proof. Evidently, the payoff profile in every period of the repeated game must be in co({u(a) : a € A}). In G(T),
the average payoff profile under o* is the simple average of T such points, while in G°(c0) it is a weighted average
of countably many such points, so in both cases the average payoff profile must still be in co{u(a) : a € A}) by the
convexity of this set.

Suppose now player i’s average payoff is strictly less than y,. Then consider a new repeated game strategy o-; for i,
where o/(h) best responds to the (possibly correlated) action profile o*,(h) after every non-terminal history /. Then
playing o guarantees i at least y; in every period, so that his average payoff will be at least v,. This would contradict
the optimality of o} in the NE o™. O

38Even when there are only 2 players, the minimax strategy against P1 might be a mixed strategy of P2. By observing only past actions, P1 does
not know if P2 is really randomizing with the correct probabilities.
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5 Folk Theorem for Infinitely Repeated Games

5.1 The folk theorem for infinitely repeated games. It is natural to ask what payoff profiles can arise in G°(c0). Write
E (G5(00)) for the set of average payoff profiles attainable in SPEs of G%(c0). Since every SPE is NE, in view of

Proposition 94, the most we could hope for are results of the following form: “lims_; E (Gd(oo)) equals the set of
feasible and IR payoffs of G.” Theorems along this line are usually called “folk theorems”, for such results were
widely believed and formed part of the economic folklore long before anyone obtained a formal proof.

It is important to remember that folk theorems are not merely efficiency results. They are more correctly characterized
as “anything-goes results”. Not only do they say that there exist SPEs with payoff profiles close to the Pareto frontier,
but they also say there exist other SPEs with payoff profiles close to players’ minimax payoffs.

The following is a folk theorem for infinitely repeated games with perfect monitoring.

Theorem 95 (Fudenberg and Maskin, 1986). Write V* for the set of feasible and strictly IR payoff profiles of G.
Assume V* has full dimensionality. For any v* € V*, there exists 5e (0, 1) such that v € E (G‘S(OO)) forall 6 € ((_5, 1).

Proof. See lecture. O

5.2 Rewarding minimaxers. The proof of Theorem 95 is constructive and explicitly defines an SPE with average payoff
v*. To ensure subgame-perfection, the construction must ensure that —/ have an incentive to minimax i in the event
that i deviates. It is possible that the minimax action against i hurts some other player j # i so much that j would
prefer to be minimaxed instead of minimaxing i. The solution, as we saw in lecture, is to promise a reward of € > 0
in all future periods to players who successfully carry out their roles as minimaxers.*® This way, at a history that calls
for players to minimax i, deviating from the minimax action loses an infinite stream of € payoffs. As players become
more patient, this infinite stream of strictly positive payoffs matters far more than the utility cost from finitely many
periods of minimaxing i.

3The strategy profile used in the proof of Theorem 95 is often called the “stick and carrot strategy”. If a player deviates during the normal phase,
the deviator is hit with a “stick” for finitely many periods. Then, all the other players are given a “carrot” for having carried out this sanction.
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(1) Extensions of the folk theorem; (2) Refinements of NE; (3) Signaling games

TF: Chang Liu (chang_liu@g.harvard.edu)

1 Extensions of the Folk Theorem

1.1 Drop minimaxers’ rewards. Sometimes, no complicated reward schemes as in Theorem 95 are necessary. This is
the case when minimaxing i is not particularly costly for her opponents, as the following example demonstrates.

Example 96 (December 2012 Final Exam). Consider an infinitely repeated game with the following symmetric stage
game.

L C R
T | -4,-412,-8 | 3,1
M | -8,12 8,8 5,0
B 1,3 0,5 4,4

Construct a pure strategy profile of the repeated game with the following properties: (i) the strategy profile is an SPE
of the repeated game for all ¢ close enough to 1; (ii) the average payoffs are (8, 8); (iii) in every subgame, both players’
payoffs are nonnegative in each period.

Solution:

We quickly verify that each player’s pure minimax payoff (i.e., when minimaxers are restricted to using pure strategies)
is 1. P1 minimaxes P2 with T, who best responds with R, leading to the payoff profile (3,1). Symmetrically, P2
minimaxes P1 with L, who best responds with B, giving us the payoff profile (1,3). So, (8, 8) is feasible and strictly
individually rational, even when restricting attention to pure strategies.

However, we cannot directly recite Theorem 95, for the construction there uses a public randomization device in
several places — for instance to give the € > 0 reward to minmiaxers — but the question asks for a pure strategy profile.
Even if we are allowed to use public randomizations, we still face the additional restriction that we cannot let any
player get a negative payoff in any period, even off-path. If we publicly randomize over some action profiles, then we
are restricted to those action profiles in the lower right corner of the payoff matrix in all subgames.

Perhaps the easiest solution is to build a simpler SPE and forget about giving the £ > 0 reward to minimaxers
altogether. This is possible because for this particular stage game, the minimaxer gets utility 3 while the minimaxee
gets utility 1, so it is better to minimax than to get minimaxed. Consider an SPE given by three phases: in normal
phase, play (M, C); in minimax P1 phase, play (B, L); in minimax P2 phase, play (7, R). If player i deviates during
normal phase, go to minimax Pi phase. If player j deviates during minimax Pi phase, go to minimax P phase, where
possibly j = i. If minimax Pi phase completes without deviations, go to normal phase.

We verify this strategy profile is an SPE for ¢ near enough 1 using one-shot deviation principle. Due to symmetry, it
suffices to verify P1 has no profitable one-shot deviation in any subgame. For any subgame in normal phase, deviating

gives at most
2

12+6-1+ -8, 6
1-9¢ ©)
while not deviating gives
2
8+6-8+ - 8. 7
"% (7
Equation (7) minus equation (6) gives
—4+6-7,

which is positive for ¢ > %.

For a subgame in the minimax P1 phase, deviating not only hurts P1’s current period payoff, but also leads to another
period of P1 being minImaxed. So P1 has no profitable one-shot deviation in such subgames for any 9.
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For a subgame in the minimax P2 phase, deviating gives at most

2

5461+ -8, 8
5 ®)
while not deviating gives
2
3+6-8+ - 8. 9
"% €))
Equation (9) minus equation (8) gives
-2+6-7,
which is positive for 6 > %
Therefore this strategy profile is an SPE whenever ¢ > max {‘7‘, %} = ‘7‘. ¢

It turns out minimaxer rewards are generally unnecessary when there are only two players*’, as the following theorem
shows. In particular, this says we can drop the full-dimensionality assumption from the Fudenberg-Maskin theorem
when n = 2.

Theorem 97 (Fudenberg and Maskin, 1986). Write V* for the set of feasible and strictly IR payoff profiles of G where
n = 2. For any v* € V*, there exists se (0, 1) such that v € E (G‘S(OO))for all 6 € ((_5, 1).

Proof. We may without loss assume each player’s minimax payoff is 0.

Consider a strategy profile with two phases. In the normal phase, players publicly randomize over vertices {u(a) : a €
A} to get v* as an expected payoff profile. In the mutual minimax phase, P1 plays the minimax strategy against P2
while P2 also plays the minimax strategy against P1, for M periods. If any player deviates in the normal phase, go to
the mutual minimax phase. If any player deviates in the mutual minimax phase, restart the mutual minimax phase. If
the mutual minimax phase completes without deviations, go to normal phase.

We show that for suitable choice of M, this strategy profile forms an SPE for all ¢ near 1. Write

vi = max u;(a;,a-;).
a;,a_;€A_;

Choose M large enough so that Mv: > 2v; for each i € {1,2}. Write u, as the payoff to i when i and —i both play the
minimax actions against each other. Note that u, < 0.

Consider a subgame in normal phase. If player i makes a one-shot deviation, she gets at most:

5M+1
‘_’i+5ﬂi+522i+"'+5MZi+_l 6vf, (10)
while conforming gives
M+1
Vi OV 4+ 8V e+ MY+ 7 61/?. (11)

Equation (11) minus equation (10) gives
Vi= Vi 0+ + 80T -y,

which is no less than —v; + (6 + --- + 6M)v:f since v > 0 and u; < 0. But for 6 closeto 1, 6 +--- + oM > MJ2,
hence implying —v; + (6 + - - - + 6")v; > 0 by the choice of M. So for 6 large enough, there are no profitable one-shot
deviations in normal phase.

Consider a subgame in the first period of the mutual minimax phase. If player i deviates, she gets at most:
6M+]
0+5g,+522i+---+5"4%+1—6v;‘, (12)

where the opponent playing the minimax strategy against i implies that her payoff in the period of deviation is bounded
by 0. On the other hand, conforming gives

M+1
1-9

40However, the SPE from the proof of Theorem 97 is not allowed in Example 96, as it involves players getting payoffs (-4, —4) in some periods
of some off-path subgames.

u+Ou, + 8u, + -+ Myl + Vi (13)
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Equation (13) minus equation (12) gives:

(1- 6M)gl. + 6va,
which is positive for ¢ sufficiently close to 1 since u; < 0 and v} > 0. This shows i does not have a profitable one-shot
deviation in the first period of the mutual minimax phase. A fortiori, she cannot have a profitable one-shot deviation
in later periods of the mutual minimax phase either.

This completes the proof. m}

Example 98 (From old problem sets of Jerry Green). Consider the infinitely repeated game whose stage game is as

below and whose common discount factor is %

A D
A]23]1,5
D |0,1|01

Show that ((A, A), (A, A), ...) cannot be sustained in any SPE path.
Solution:

Consider the incentives of player 2. For this we can use the one-shot deviation principle. On path player 2 is getting 3
each period. The most profitable one-shot deviation of player 2 is to D, and it gives a current gain of 5 — 3 = 2. The
heaviest punishment for the deviation is minimaxing player 2 forever after the deviation, which gives a per-period loss
of 1 —3 = —2. Since the discount factor is %, the deviation to D in a single period, followed by the punishment of
minimaxed forever gives a utility difference of

1

2+ 151 (=2)=0.
2

Any weaker punishment (in terms of giving a higher continuation payoff) would cause player 2 to deviate. Thus, to

sustain (A, A) on path forever, in the subgame when player 2 deviates player 1 has to play D for all eternity. However,

for player 1, A dominates D in the stage game, so playing D forever leads to an average payoff strictly lower than her

IR payoff, which is a contradiction! ¢

Example 99 (December 2016 Final Exam). Consider the three player game given by the following two tables (player
3 chooses the matrix).

as a b, b3 a by
a | 2,2,2 | 1,1,1 a | 1,1,1 | 1,1,1
by | 1,1,1 | 1,1,1 by | 1,1,1 | 2,2,2

What is the set of payoff triplets that can arise as average equilibrium payoffs of the infinitely repeated game with
discount factor 6 when ¢ is close to 1? Justify your answer.

Solution:

Note that the version of the Theorem 95 doesn’t help here, because the set of feasible payoffs (the segment connecting
(1,1,1) and (2, 2, 2)) is one-dimensional and there are three players.

Since (2,2, 2) is NE payoff of the stage game, it is automatically attainable as average SPE payoff, irrespective of the

discount factor.
Each player mixing with probabilities % between her two strategies is another NE in the stage game, which gives
55 5)

payoff (45'1’ f—w %) Infinite repetition of this Nash profile leads to average SPE payoff (Z’ 1)

Public randomization over the above two SPEs gives us average SPE payoffs the straight line between (%, %, %) and
(2,2,2), both vertices included.

We now show that any payoff strictly below % cannot be sustained in any SPE. Denote by
a = inf{v : (v,v,v) is SPE payoff}
the lowest SPE payoft of a player (from symmetry this has to be the same for all players). Take any SPE payoff

(v, v,v). Suppose that it is attained when players follow strategy o-. We have seen in the lecture that from all mixture of

53



actions in the first period, there exists a player that can “deviate” and get at least f‘r Hence, for o to be SPE, this player
should find such a one-shot deviation not worthwhile. The deviation yields an average payoff at least (1 — 6)?1 + da, so
v>(1- 6)% + da. But v is arbitrary, so it follows that @ > (1 — 6)% + da, which implies that & > %.

This completes the proof. The set of possible SPE payoffs is the straight line between (45'1’ 2, %) and (2,2,2), both
vertices included. \

1.2 The folk theorem for finitely repeated games. In view of Proposition 90, the stage game G must have multiple NEs
for G(T') to admit more than one SPE. Unlike an infinitely repeated game, a finitely repeated game “unravels” because
some NE must be played in the last period. However, if G has multiple NEs, then conditioning which NEs get played
in the last few periods of G(T') on players’ behavior in the early periods of the repeated game provides incentives for
cooperation. The following result is not the most general one, but it shows how one can use the multiplicity of NEs in
the stage game to incentivize cooperative behavior for most of the T periods.

Proposition 100. Suppose that each player’s stage game payoffs from Nash equilibria can vary. That is, for each
IEN, u (50)) = MaXqeNEG) Ui (@) > MingeNgG) Ui (@) = u; (C_Y(i))- Write d; = max, qea;a ea {ui(a:',a—i) - ui(ai,a—i)}
for an upper bound on the deviation utility to player i in the stage game. Let integer M; be large enough such that
M; - (u,- (E(i)) —u; (g(i))> > d;, and let M = } oy M;. For any feasible payoff profile v* with v > u; (g(i))for each player
i, and any integer T > M, there exists an SPE of G(T) where the average payoff is v* for all except the last M periods.

Proof. Consider the following strategy profile. In the first 7 — M periods, if no one has deviated so far, publicly
randomize so that expected payoff profile is v*. If some players have deviated and player i was the first to deviate, then
play o for the remainder of these first T — M periods. In the last M periods, if no one deviated in the first T — M
periods, then play @" for M, periods, followed by @? for M, periods, ..., finally @” for M,, periods. If someone
deviated in the first T — M periods and i was the first to deviate, then do the same as before except play a” in the M;
periods where " was played.

We use the one-shot deviation principle to argue this strategy profile forms an SPE. At any subgame starting in the
first T — M periods without prior deviations, suppose that player i deviates. Compared with conforming to the SPE
strategy, player i gains at most d; in the current period, but gets weakly worse payoffs for the remainder of these first
T — M periods as v} > u; ). In addition, i loses at least d; utility across M, periods in the last M periods of the game
by choice of M;. Therefore, player i does not have a profitable one-shot deviation at any subgame starting in the first
T — M periods without prior deviations.

At a subgame starting in the first 7 — M periods with prior deviation, the SPE specifies playing some NE action profile
of the stage game thereafter. Deviation can only hurt current period payoff with no effect on the payoffs of any future
periods. Similar reasoning holds for subgames starting in the last M periods. O

Example 101 (December 2013 Final Exam). Suppose the following game is repeated 7' times and each player maxi-
mizes the sum of her payoffs in these T plays. Show that, for every € > 0, we can choose T big enough so that there
exists an SPE of the repeated game in which each player’s average payoff is within & of 2.

A B C
Al 22 | -1,L,3]00
B | 3,-1 1,1 10,0

c| 0,0 0,0 | 0,0

Solution:

For given & > 0, choose T large enough such that Z(T_% > 2 — g. Consider the following strategy profile for both

players: in period ¢ < T, play A if (A, A) has been played in all previous periods, else play C. In period T, play B if
(A, A) has been played in all previous periods, else play C. At a history in period ¢+ < T — 1 where (A, A) has been
played in all previous periods, a one-shot deviation at most gains 1 in the current period but loses 2 in each of periods
t+1,t+2,...,T — 1, and finally loses 1 in period 7. At a history in period t < T — 1 with prior deviation, one-shot
deviation hurts current period payoff and does not change future payoffs. At a history in period T, clearly there is no
profitable one-shot deviation as this is the last period of the repeated game and the strategy profile prescribes playing
a Nash equilibrium of the stage game. ¢
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2 Refinements of NE in Extensive and Normal Form Games

2.1 Four refinements. In lecture we studied four refinements of NE for extensive form games: perfect Bayesian
equilibrium (PBE), sequential equilibrium (SE), trembling-hand perfect equilibrium (THPE), and strategically
stable equilibrium (SSE). Whereas specifying an NE or SPE just requires writing down a profile of strategies, PBE
and SE are defined in terms of not only a strategy profile, but also a belief system x — that is, a collection of distributions
nj(«lI;) € A(I;) over the vertices in information set /; for each information set of each player j. The four refinements
differ in terms of some consistency conditions they impose on the belief system.

Definition 102 (Perfect Bayesian equilibrium). A (weak) perfect Bayesian equilibrium (PBE) is a strategy profile
together with a belief system, (o, 7), so that:

1. For all player j € N and information set /; € 7 ;, o-; maximizes expected payoffs starting from information set
I; according to belief system 7:

uj(oj,o_jlj,mn) > u,-(o-}, o_jll;,n) for all 0';- € A(S ).
2. For all on-path*' information sets I;, 7;(-|I;) is derived from Bayes’ rule.

If an information set /; is reached with strictly positive probability under o, then the conditional probability of having
reached each vertex v € I; given that /; is reached, r;(v|l;), is well-defined. On the other hand, we cannot use Bayes’
rule to compute the conditional probability of reaching various vertices in an off-path information set, as we would be
dividing by 0. As such, PBE places no restrictions on these off-path beliefs.

Definition 103 (Sequential equilibrium). A sequential equilibrium (SE) is a strategy profile together with a belief
system, (o, 1), so that:

1. For all player j € N and information set /; € 1, o-; maximizes expected payoffs starting from information set
I; according to belief system 7:

uj(oj,o_jlj,n) > u,-(o-}, o_jll;,n) for all 0';- € A(S ).

2. There exists a sequence of strictly mixed strategies {o-<m)} so that ™ — o, and furthermore 7™ — 7, where
for each m, ™ is the unique belief system consistent with " under Bayes’ rule.

Though it is not part of the definition, it is easy to show that in an SE, all on-path beliefs are given by Bayes’ rule, just
as in PBE.

Compared to PBE, SE places some additional restrictions on off-path beliefs. Instead of allowing them to be
completely arbitrary, SE insists that these off-path beliefs must be attainable as the limiting beliefs of a sequence
of strictly mixed strategy profiles that converge to o — hence the name “sequential equilibrium”. Given a strictly
mixed o™, every information set is reached with strictly positive probability. Therefore, the belief system 7™ is
well-defined, as there exists exactly one such system consistent with o under Bayes’ rule.

Importantly, there are no assumptions of rationality on the sequence of strategies . It is merely a device used
to justify how the belief system 7 might arise. In particular, there is no requirement that o™ forms any kind of
equilibrium under beliefs 7™ .

There is one special case where a PBE is automatically an SE.

Proposition 104. If all non-singleton information sets of all players are on-path in a PBE, then that PBE is an SE.

Relatedly, there is a case where an extensive form NE is automatically SE.

Proposition 105. Suppose o is a strictly mixed Nash equilibrium in an extensive form game. Let 1 be the unique
belief system consistent with o under Bayes’ rule. Then (o, ) is a sequential equilibrium.

The next two equilibrium concepts, THPE and SSE, are defined in terms of trembles. A tremble &€ : M — (0, 1] in
an extensive form game associates a small, positive probability to each move in each information set, interpreted as
the minimum weight that any strategy must assign to the move. That is, the constraint we impose on o-; for all player
J € N, information set /; € I ; and move my, € My, is oy,(my;) 2 e(my,).

The strategy profile o is said to be an e-constrained equilibrium if at each information set /;, o; maximizes j’s
expected payoff subject to the constraint of minimum weights from the tremble &. Again, due to strictly mixing, there
exists exactly one belief system consistent with o under Bayes’ rule.

41 An information set is called on-path if it is reached with strictly positive probability under o. Else, it is called off-path.
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Definition 106 (Trembling-hand perfect equilibrium). A trembling-hand perfect equilibrium (THPE) is a strategy
profile o so that there exists a sequence of trembles {s(’")} converging to 0 and a sequence of strictly mixed strategies

{0'(’")} so that ™ — ¢ and for each m, o™ is an £"-constrained equilibrium.

Definition 107 (Strategically stable equilibrium). A strategically stable equilibrium (SSE) is a strategy profile o so
that for every sequence of trembles {s(’”)} converging to 0, there exists a sequence of strictly mixed strategies {0'(’")}

so that o™ — ¢ and for each m, o™ is an & -constrained equilibrium.

THPE and SSE are also defined for normal form games, where the tremble & specifies minimum weights for the
different actions of all players.

The following table summarizes some of the key comparisons between these four equilibrium concepts.

Belief at on-path info. set Belief at off-path info. set Robustness to trembles
PBE Bayes’ rule No restriction Not robust
SE Bayes’ rule Limit of beliefs associated with one Not robust
sequence of strictly mixed profiles
THPE N/A N/A Robust to one sequence of trembles
SSE N/A N/A Robust to any sequence of trembles

Finally here are some useful facts:

Fact 108. For an extensive form game T, the following inclusions** hold:

PBET)
NEI) 2 2 SE(I') 2 THPE(I) 2 SSE().
SPE(I)

There is no inclusion relationship between PBE(I") and SPE(I).

Fact 109. For a finite extensive form game I', THPE(I') # @, though it is possible that SSE(I') = @.

That is, there is always at least one THPE in a finite extensive form game. The immediate implication is that SE, SPE,
PBE, and NE are also non-empty equilibrium concepts.

2.2 Some examples. We illustrate these refinement concepts through two examples. The first example shows an
extensive form game where we have strict inclusions: NE(I') 2 PBE(I") 2 SE(I).

Example 110 (A modified market entry game). Consider the following modification to the entry game. The entrant
(P1) chooses whether to stay out or enter the market. If she enters, nature then determines whether her product is
good or bad, each with 50% probability. Incumbent (P2) observes entry decision, but not whether the product is good
or bad. If entrant enters, the incumbent can choose to Allow entry, Fight, or Fight Fiercely. This extensive game is
depicted in Figure 14. Let’s write I, for P2’s information set and abbreviate strategies in the obvious way (eg. (O, F)
is the strategy profile where P1 plays Out, P2 plays Fight). Restrict attention to pure strategy equilibria.

1. What are the pure strategy NEs of this game?

It is easy to see that (O, F), (O, FF) are NEs. P2’s action has no effect on his payoff, since P1 never enters. P1
does not have a profitable deviation either, as playing I yields payoff of —1 if P2 plays F, -9 if P2 plays FF.

In addition, (1, A) is also an NE. P2 does not have a profitable deviation to F, since doing so yields an expected
payoff of 0.5 - (-1) + 0.5-2 = 0.75 < 1. P2 does not have a profitable deviation to F'F, since doing so yields an
expected payoft of —9.

2. What are the pure strategy PBEs of this game?
The associated strategies must be a subset of NEs.

There cannot be a PBE with strategy profile (O, FF). No matter what off-path belief m(-|/I;) P2 holds, he will
find it strictly better to play A (which leads to payoff 1) rather than FF (which leads to payoff —9).

“nclusion is in terms of strategy profiles. Technically, NE does not belong to the same universe as PBE and SE, as these later objects require a
belief system in addition to a strategy profile.
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(1, 1) (-1,-1) (-9,-9) (1,1) (-1,2) (-9,-9)

Figure 14: A modified market entry game.

However, for belief 7, (b|l) > %, (O, F), m(:|I)) forms a PBE. Note that I, is off-path under strategy profile

(O, F), so P2 is allowed to hold any belief. P2’s payoff from F is (1 — mp(b|15)) - (—1)+m(b|2) -2 = 3mp(b|1)—1.

Given belief m,(b|l5) > %, P2’s payoff from F which is greater than his payoff from A or FF.*

In addition, ((1,A),7l’2(b|12) = %) is another PBE. In fact, this is the only PBE featuring strategy profile (/, A),

since the information set I, is on-path for this strategy profile and so m(+|I;) must be derived from Bayes’ rule.
3. What are the pure strategy SEs of this game?

These must form a subset of pure PBEs.

There is no SE of the form ((O, F), m>(:|1)). This is because, in every strictly mixed behavioral strategy profile

o™, the information set /, is reached with strictly positive probability, meaning Bayes’ rule requires ﬂ(zm)(b”z) =

1. But SE requires that ﬂ(zm)(bUz) — m(blly), so we see in any SE of this form we must have my(bl) = § < 3.

SE requires that P2’s action at the information set maximizes payoff subject to belief, yet under the belief
(b)) = %, P2 finds it strictly profitable to deviate to A.

We finally check that ((I LA), mp(blL) = %) is an SE*. It is straightforward to verify that actions maximize ex-
pected payoff at each information set given belief in ((1 ,A), m(bllp) = %) Now, consider a sequence of strictly
mixed strategy profiles o = (%0 ® (1 - %)I, (1 - %)A ®5F @ ﬁFF) It is easy to see that o™ — (I, A).

Furthermore, for each such profile, n(zm)(b|12) = %, so we get n(zm)(bllz) — mp(bl).

The second example illustrates THPE and SSE in a normal form game.

Example 111 (December 2013 Final Exam). In Example 26, we considered the normal form game

L R Y
T 2,2 -1,2 | 0,0
B|-1,-1| 0,1 | 1,-2
X 0,0 -2,1 | 0,2

two pure Nash equilibria, (7, L) and (B, R), as well as infinitely many mixed Nash equilibria, (7, pL & (1 — p)R) for
p €[5, 1). Now find all the THPEs and SSEs of this game.

Solution:

43Note that this PBE is not an SPE since the strategy profile does not form an NE when restricted to the subgame starting with the chance move.
Recall that in lecture we saw an example of an SPE that is not a PBE. This completes the argument that neither the set of SPEs nor the set of PBEs
nests the other one.

44This does not follow from the non-emptiness of SE as an equilibrium concept, since we have restricted attention to pure equilibria. A game
could only have mixed SE.
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First we show (T, pL® (1 — p)R) is not a THPE for any p € [}1, 1] (so we also rule out the pure (7, L)). Suppose there is
a sequence of strictly mixed strategy profiles o™, each of which is an £"”-constrained equilibrium for the sequence of
trembles, £, that converge to 0. Since 0'(]’”)(8) > 0 and 0'(1’”) (X) > 0 for each m, R is a strictly better response than
L against 0'(1’") for each m. This means 0'(2’")(L) = & (L) for each m. Since o-;’") — 03, it follows that o5(L) = 0 < 1.
But we know that THPE(G) € NE(G) and THPE(G) # @, so (B, R) must be the unique THPE.

Now we check that (B,R) is also an SSE.*> Consider any sequence of trembles {8(’")} converging to 0. Suppose
P2 plays £ (L)L & (1 - £ (L) — £5"(Y)) R & &5 (Y)Y. Then P1 gets 2&5"(L) - (1 - &"(L) - £3”(Y)) from T,
—&3"(L) + £"(Y) from B, and -2 (1 — £"/(L) - &5 (Y)) from X. Whenever &} (L), 3" (Y) < 0.1, it is clear that B is
the unique best response, and thus P1 will play 8(1"’)(T)T ® (l - s(lm)(T) - 8(1'") (X )) Bo a(lm)(X )X. Similarly, suppose P1
plays £/"(T)T @ (1 - &"(T) - &"(X)) B ® & (X)X. Then P2 gets 2&{"(T) — (1 - &{"(T) - &{"’(X)) from playing
L, 25(1'")(T) + (l - s(lm)(T) - a(lm)(X)) + 8(1’")(X) from playing R, and —2 (1 - 8(1'") (T) - s(lm)(X)) + 28(1'")(X) from playing
Y. Whenever 8(1'")(T ), 8(1'”)(X) < 0.1, it is clear that R is the unique best response, and thus P2 will play a(zm)(L)L )
(l - 8(2’") (L) - s(zm)(Y )) RGBS(Z'")(Y )Y. This means that, given any sequence of trembles {8(’”)} converging to 0, eventually
in an £ -constrained equilibrium, P1 puts as much weight as possible on B while P2 puts as much weight as possible
on R — in fact, this happens as soon as the maximum tremble in £"™ falls below 0.1. Then, o™ — (B, R) shows that
(B,R) is an SSE. ¢

3 Signaling Games

3.1 Strategies, beliefs, and PBEs in signaling games. Signaling games form an important class of examples within
extensive form games with incomplete information. For a schematic representation, see Figure 15.

c

Figure 15: Schematic representation of a signaling game.

Nature determines state of the world, 8 € ® = {6}, 6,}, according to a common prior. P1 is informed of this state. P1
then selects a message from a possibly infinite message set A; and sends it to P2. In the buyer-seller example from
class, for instance, the state of the world is the quality of the product while the message is a (price, quantity) pair that
the seller offers to buyer.

P2 does not observe the state of the world, but observes the message that P1 sends. This means P2 has one information
set for every message in A;.

A PBE (01, 0, m>) in the signaling game must then have the following components:

1. 01 : ® = A(A)) for P1, that is what to send in each state.

2. 03 : A} = A(Ap) for P2, that is how to respond to every message that P1 could send (even the oftf-path messages
not sent by P1°s strategy).

3. m: A — A(O) for P2, that is what to believe after receiving every message that P1 could send.

43Since the set of SSE is not always non-empty, we cannot immediately conclude that (B, R) must be an SSE.
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The requirements are that:

1. P2’s belief system m; is derived from Bayes’ rule whenever possible.
2. P2’s action after every message a; is optimal given mp(|a;).

3. P1’s action in every state of the world 6 is optimal given 0.

Figure 16: Schematic representations of separating and pooling PBEs.

When there are two states of the world (i.e., two “types” of P1), pure PBEs can be classified into two families, as
illustrated in Figure 16. In a separating PBE, the two types of P1 send different messages, say a| # af. By Bayes’
rule, each of these two messages perfectly reveals the state of the world in the PBE. In a pooling PBE, the two types of
P1 send the same message, say a’”’. By Bayes’ rule, P2 should keep his prior about the state of the world after seeing
a”’ in such a PBE. In a PBE from either family, most of P2’s information sets (i.e., messages he could receive from
P1) are off-path. PBE allows P2 to hold arbitrary beliefs on these off-path information sets. In fact, we (the analysts)
will often want to pick “pessimistic” off-path beliefs to help support some strategy profile as a PBE. The following
example will illustrate the role of these off-path beliefs in sustaining equilibrium.

3.2 An example. We illustrate separating and pooling PBEs in a civil lawsuit example.

Example 112 (Civil lawsuit). Consider a plaintiff (P1) and a defendant (P2) in a civil lawsuit. Plaintiff knows whether
she has a strong case (0y) or weak case (6,), but the defendant does not. Defendant has prior belief that 7(6y) = %,
@) = % The plaintiff can ask for a low settlement or a high settlement, A; = {1,2}. The defendant accepts or
refuses, A, = {y,n}. If the defendant accepts a settlement offer of x, the two players settle out-of-court with payoffs
(x, —x). If defendant refuses, the case goes to trial. If the case is strong (6 = 6g), plaintiff wins for sure and the payoffs
are (3, —4). If the case is weak (8 = 0;), the plaintiff loses for sure and the payoffs are (—1,0). The extensive form
representation of this example is given by Figure 17.

Focus on pure strategy PBEs.

59



Figure 17: Extensive form representation of the civil lawsuit example.

Separating equilibrium: Typically, there are multiple potential separating equilibria, depending on what action each
type of P1 plays. Be sure to check all of them.

1. Sl(gy) = 2, S](@L) =1.

In any such PBE we must have m,(6y[2) = 1, m2(6.|1) = 1, 52(2) =y, s2(1) = n, as is illustrated in Figure 18.
But this means type 6, gets —1 in PBE and has a profitable unilateral deviation by playing s1(6.) = 2 instead.
Asking for the high settlement makes P2 think P1 has a strong case, so that P2 will settle and P1 will get 2
instead of —1. Therefore no such PBE exists.

(1,—1)>y' T <y:(2’"2)
(3. ~4) AT o (3. -4)

Figure 18: 51(6y) = 2, s1(8) = 1 is not part of PBE.

2. 51(0n) = 1, 51(6,) = 2.%°

In any such PBE we must have m,(6,]2) = 1, m(0y]1) = 1, 52(2) = n, s2(1) = y, as is illustrated in Figure 19.
But this means type 6y gets 1 in PBE and has a profitable unilateral deviation by playing s}(6y) = 2 instead.
Asking for the high settlement makes P2 think P1 has a weak case, so that P2 will let the trial go to court. But
this is great when P1 has a strong case, giving her a payoff of 3 instead of 1. Therefore no such PBE exists.

461t seems very counterintuitive that the plaintiff with a strong case asks for a lower settlement than the plaintiff with a weak case, but this is still
a candidate for a separating PBE so we cannot ignore it.
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(1.-1) § [Pl < =2
(3.4) o7 ™o (3,-4)
0 = 0 | 7(0n) = 3

P2 ®cC P2

(1,-1) :y> < 2.-2)
(-1,0) o7 o 2 TG (-1,0)

Figure 19: 51(0y) = 1, s1(6.) = 2 is not part of PBE.

Pooling equilibrium: In a pooling equilibrium all types of P1 play the same action. When this “pooled” action a}
is observed, P2’s posterior belief is the same as the prior, m;(6la]) = n(6), since the action carries no additional
information about P1’s type. When any other action is observed (i.e. an off-path action is observed), PBE allows P2’s
belief to be arbitrary. Every member of A; could serve as a pooled action, so we need to check for all of them
systematically.

1. 51(0) = 51(6) = 1.
In any such PBE we must have m,(6y|1) = % Under this belief, P2’s expected payoff to a; = nis % (4 + % -0 =
—%, while playing a, = y always yields —1. Therefore in any such PBE we must have s,(1) = y, which gives
both types of P1 payoft 1, as is illustrated in Figure 20. But then the 8y type of P1 has a profitable unilateral
deviation of s{(6y) = 2, regardless of what s5(2) is! If 5(2) = y, that is P2 accepts the high settlement, then
type 6y P1’s deviation gives her a payoff of 2 rather than 1. If s,(2) = n, that is P2 refuses the high settlement,
then this is even better for the type 6y P1 as she will get a payoff of 3 when the case goes to court. Therefore no

such PBE exists.
(1,—1)>y' | P 5 y_0(2,-2)
3B,-4) o n L o (3,-4)
P23 ®c 3P2

(1,—1)> | ree
(-1,00 7 boem 2 o (-1,0)

Figure 20: 51(6y) = s1(8) = 1 is not part of PBE.

2. s1(0n) = 51(01) = 2.

In any such PBE we must have 75(6y[2) = £. Under this belief, P2’s expected payoff to a, = nis §-(-4)+3-0 =
—%, while playing a, = y always yields —2. Therefore in any such PBE we must have s,(2) = n, which give
type 6y payoff of 3 and type 6, payoff of —1. Type 8y does not have incentive to deviate as she already gets her
maximum payoff. In order to prevent a deviation by type 6;, we must ensure s(1) = n as well, as is illustrated
in Figure 21. Else, if P2 accepts the low settlement offer, 6, would have a profitable deviation: offering the
low settlement instead of following the pooling action of high settlement yields her a payoff of 1 instead of —1.
Whether s,(1) = n is optimal for P2 depends on the belief, 7,(6|1). This is an off-path belief and PBE allows
such beliefs to be arbitrary. Suppose m(6g|1) = A € [0, 1]. Then P2’s expected payoff to playing s>(1) = n is
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A-(=4)+ (1 -2)-0 = —44, while s5(1) = y yields —1 for sure. Therefore to ensure P2 s,(1) = n is optimal
given belief, we need 4 < }1. If P2’s off-path belief is that P1 has a strong case with probability less than i
upon seeing a low-settlement offer, then it is optimal for P2 to reject such low-settlement offers and 6; will not
have a profitable deviation. In summary, there is a family of pooling equilibria where s;(0y) = s51(6.) = 2,
s2(1) = 55(2) = n, m(6y|2) = % m5(0y|1) = A where A € [0, %]. Crucially, it is the judicious choice of off-path
belief m,(-|1) that sustains an action of s,(1) = n, which in turn sustains the pooling equilibrium.

(1.-1) > R TR < i
3,-4) & n | Lo (3, -4)
Pzi ®c 3P2

(1-1) > < 2.-2)
(~1,0) 7 o 2 TG (-1,0)

Figure 21: 51(6y) = s1(61) = 2 can be part of PBE.

To sum up, any pure strategy PBE in this game is a pooling equilibrium (s, ) with s;(0y) = 51(6.) = 2, s2(1) =
52(2) = n, m(0pl2) = 1, ma(By|1) = A where A € [0, 1]. 3

3.3 Intuitive criterion. Some of the PBEs seem fragile, and can be broken using a speech as we saw in the lecture. This
is a heuristic, since it is hard to explicitly model speech. Cho and Kreps (1987) formalize this idea and introduce the
intuitive criterion. It aims to reduce possible outcome scenarios by: (i) restricting the type space to types of agents
who could obtain higher utility levels by deviating to off-path messages, and (ii) by considering in this subset of types
the types for which the off-path message is not dominated under opponent’s best response.

Definition 113 (Intuitive criterion). A PBE (s, 55, 7) in a signaling game satisfies the intuitive criterion if there do
not exist (dy, do, 6) such that:

L. a; ¢ {s1(61), s1(62)}.
2. u(@r,a2,0) > u(s1(9), s2(s1(8)), 9).
3. ui(@ar,a2,6) < ui(s1(0), s2(s1(0)), 0) for all @, € A, and 6 # 6.

4. ap € argmax,, ¢, U2(d1,az, 0).

Cho and Kreps (1987): “Despite the name we have given it, the intuitive criterion is not completely intuitive.” P2
is trying to infer P1’s type based on the off-path message @;. The intuitive criterion makes the following restriction:
If for type 6, every response P2 might make after a; yields strictly less payoff than equilibrium, then P2 “should be
sure” that type 6 would not deviate to a;. Why not restrict the off-path beliefs directly? One answer is that it causes
existence problems in games in which P1 has actions that are dominated for all types.

In the civil lawsuit example above, all of the pooling PBEs satisfy the intuitive criterion. The only off-path message
a; in the pooling PBE is the low settlement offer, a; = 1.

If § = 6, then by condition 4, a, = n. But this shows that condition 2 must not hold, since 6; gets the same payoff in
the PBE as under (a1, @, ) — the defendant rejects the settlement in both cases.

If & = 6y, then by condition 4, &, = y. But this shows that condition 2 must not hold, since 8y was actually getting
higher payoff in PBE when defendant rejects settlement than under (a;, a,, 6), where defendant accepts settlement.

So there are no (@, &, #) satisfying conditions 1 through 4, meaning the high settlement pooling PBEs satisfy the
intuitive criterion.
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4 The End

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the end: then stop."

— Alice in Wonderland, on how to survive grad school at Harvard
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