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Abstract

We study a two-period moral hazard problem; there are two agents, with action sets that are unknown

to the principal. The principal contracts with each agent sequentially, and seeks to maximize the worst-

case discounted sum of payoffs, where the worst case is over the possible action sets. The principal

observes the action chosen by the first agent, and then offers a new contract to the second agent based

on this knowledge, thus having the opportunity to explore in the first period. We introduce and compare

three different notions of dynamic worst-case considerations. Within each notion, we define a suitable

rule of updating and characterize the principal’s optimal payoff guarantee. We find that linear contracts

are robustly optimal not only in static settings, but also in dynamic environments with exploration.
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1 Introduction

Moral hazard models, in which a principal designs a contract to incentivize an agent, have been extensively

studied and widely applied. In many canonical moral hazard models, however, optimal contracts require

precise knowledge of the environment: the set of all possible actions together with the (stochastic) mappings

from actions to outcomes. This aspect raises practical concerns, because in reality the principal’s knowledge

is certainly not entirely correct. How should the principal design contracts that have robust guarantees even

if some details are incorrect? The emerging area of robust contract design follows the Wilson Doctrine

(Wilson, 1987), which advocates for realistic approaches that are detail free.

The pioneer work by Carroll (2015) assumes that the principal knows only some of the actions available

to the agent, and evaluates contracts based on their worst-case performance, over the unknown actions the

agent might take. The results show that, very generally, the optimal contract is linear, which provides new

foundations for the common use of linear contracts in practice.

One suspicion, however, about the linear results in Carroll (2015) is how much they hinge on the

principal’s inability to explore the unknown, an opportunity that arises naturally in models with multiple

interactions.1 It is not even clear how to model (non-Bayesian) exploration in the robust paradigm. Specifi-

cally, if the principal can observe an agent’s chosen action, then she can gain insights into actions that were

initially unknown but might be subsequently undertaken. Furthermore, based on the agent’s rationality, she

may also exclude certain actions that were not chosen. In such environments, how should the principal

design contracts to best utilize exploration opportunities? Specifically, what contracts respond best to new

knowledge? Are linear contracts still robustly optimal with exploration?

A suitable class of applications of robust models in contract design involves the principal hiring or

consulting specialized agents that surpass her own expertise. This explains the principal’s limited knowledge

about all actions available to the agents and her lack of a prior belief regarding the unknown ones. For

instance, consider an individual hiring gig workers from online platforms. While long-term contracts are

typically not enforceable, she does have the opportunity to interact with a pool of workers. Given that the

workers share similar professional training, the individual’s knowledge about the capability of the pool from

past experience is valuable for improving future interactions. Within this example, the main theoretical

question of this paper is twofold: First, how should the individual structure contracts to best respond to

new knowledge gained from exploration? Second, in anticipation of such opportunities, what contracts are

1One related but distinct criticism of the robust mechanism design literature is that most models are static in construction
but assume commitment. We discuss this issue in the literature section. See also Libgober and Mu (2023) for a corresponding
perspective in the area of informationally robust mechanism design.
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optimal for acquiring new knowledge?

In the baseline model of this paper (Section 2), we study a two-period moral hazard problem. There

are two agents, whose action sets are unknown to the principal. The principal contracts with each agent

sequentially to provide incentives. She observes the action chosen by the first agent, and then offers a new

contract to the second agent based on this knowledge, thus having the opportunity to explore in the first

period. The principal and agents are all risk neutral, and payments are constrained by limited liability.

The baseline model assumes that the principal knows only some available actions of the agents, but

other unknown actions may also exist, and the principal does not even have a well-defined prior belief about

these unknown actions. Faced with this nonquantifiable uncertainty, the principal seeks to maximize her

worst-case discounted sum of payoffs, where the worst case is over the possible action sets. Consequently,

it is crucial to articulate what actions the principal considers possible in each period, and to determine how

the principal’s beliefs about unknown actions are updated across periods.

The main result of this paper is that linear contracts are robustly optimal not just in static settings, but

also in dynamic environments with exploration. In order to obtain this conclusion, we introduce and compare

three distinct notions of dynamic worst-case considerations: independent technology, advancing technology

and constant technology. In the first period, the principal believes that the first agent’s action set could be

any set containing the known actions. After the principal offers a contract to the first agent and observes

his response, a rule of updating must be specified to determine the actions the principal considers possible

in the second period, and these three notions precisely vary based on the principal’s updated beliefs about

the subsequent action sets. To better understand the results and analysis, it is helpful to imagine there is an

adversarial “nature” that selects the set of actions for the corresponding agent in each period to minimize the

principal’s payoff, and the three notions differ in the restrictions imposed on nature’s available moves across

periods. Within each notion, we define a suitable rule of updating and characterize the principal’s optimal

payoff guarantee, thereby concluding that linear contracts are robustly optimal.

We begin by considering the case of independent technology, where the action sets of the two agents

are not related; in other words, nature can select the action set for each agent independently. In this case,

the choices made by the first agent do not provide the principal with information about what actions the

second agent can take. Therefore, the learning aspect is essentially nullified, and the principal’s overall

payoff guarantee is maximized by adopting a straightforward approach: offering the optimal static contract

identified by Carroll (2015) in both periods. Characterizing the case of independent technology creates a

building block that enables us to further analyze the implications of dynamic environments with different

levels of interdependence between agents’ actions.
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Next, we analyze the first restriction that facilitates meaningful exploration: the case of advancing

technology (Section 3). In this case, the action set may expand between periods, but cannot shrink. In other

words, nature can only introduce new actions across periods, but is not allowed to delete old ones. The main

result for the case of advancing technology is that linear contracts are robustly optimal period-by-period

(Theorem 1). Toward this conclusion, we solve the principal’s dynamic problem via backward induction.

After the principal offers some first-period contract and observes the action chosen by the first agent, she

learns that this action exists and may be taken again by the second agent. Moreover, this represents the

best conjecture the principal can make in the second period, given that nature may introduce new actions

that were not present in the first period. Therefore, the principal’s second-period problem simplifies to a

single-period problem in Carroll (2015) with respect to the updated knowledge of the set of actions, and

thus optimal second-period contracts are linear.

Going back to the first period, when the principal chooses a first-period contract to maximize her overall

payoff guarantee, we establish the optimality of a linear first-period contract. The proof of this conclusion

boils down to two steps. The first step shows that any nonlinear first-period contract can be improved into

another linear contract, thereby (weakly) increasing the overall payoff guarantee (Lemma 1). The second

step further shows that the maximum of the principal’s first-period problem exists within the class of linear

first-period contracts (Lemma 2). Combining these two steps, we show that, even with the opportunity to

use any first-period contract for exploration, no other more complicated form of contracts provides a better

payoff guarantee to the principal than linear ones.

Moving on to an alternative notion with more restrictions, the case of constant technology, we assume

both agents share the same set of actions unknown to the principal (Section 4). In other words, nature can

neither introduce new actions across periods nor delete old ones. The main result for the case of constant

technology is Theorem 2, which shows that linear contracts are robustly optimal in both periods, although

not period-by-period. Specifically, the second-period analysis shows that, following nonlinear first-period

contracts, optimal second-period contracts may also be nonlinear in some cases. Nonetheless, upon back-

ward induction to the first period, it is robustly optimal to use linear first-period contracts, thereby ensuring

optimal second-period contracts are also linear on the path.

The reason for obtaining different results compared to the previous case of advancing technology is a

more subtle rule of updating. For simplicity of exposition, we assume the principal only knows one action

available to the agents.2 After observing the action chosen by the first agent, she believes the action set could

be any set that (i) contains the observed action in addition to the initially known action, and (ii) does not

2In Appendix B, we show that analogous results hold if the principal knows a general set of know actions.
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contain any action strictly better than the observed action under the first-period contract. We refer to such

actions sets as compatible (Definition 1). Requirement (i) indicates that the principal learns the existence of

the chosen action, and requirement (ii) captures the additional inference she can draw from the rationality

of the first agent.

The primary distinction from the previous notion of advancing technology lies in the analysis of the

second period. This is not a direct adaptation of the single-period problem in Carroll (2015), precisely

because the principal draws additional inferences from the rationality of the first agent, which excludes

certain actions. Therefore, the analysis of the second period in the case of constant technology is a significant

innovation point of this paper from a technical perspective. We fully characterize the principal’s optimal

second-period payoff guarantee, and identify the contract that attains it in various cases. The analysis reveals

four ways the principal may respond to the knowledge gained from observing the chosen action (Lemma

3). Specifically, the principal’s optimal guarantee is achieved by offering the best among four contracts: (i)

the first-period contract again, (ii) a modified version of the first-period contract with compensation for the

second agent, and (iii) & (iv) two linear contracts that correspond to the optimal static contracts in Carroll

(2015). As long as the first-period contract is nonlinear, and the observed action is such that one of the first

two contracts is optimal, then the optimal guarantee is achieved by nonlinear contracts.

As concluding remarks of the paper, we discuss further results. First, we analyze the situation where

the principal knows a set of actions available to the agents in the case of constant technology (Appendix

B). We characterize the principal’s optimal second-period payoff guarantee in closed form, and identify the

contract that attains it in various cases (Lemma 3′). In addition, as long as the set of known actions satisfies

a condition called lower bound on marginal cost (Definition B.1), linear contracts still outperform nonlinear

ones (Theorem 2′). Next, we examine the structure of the optimal linear first-period contract in our dynamic

model (Appendix C), and compare it with the optimal static contract identified by Carroll (2015).

Related Literature Foundations for linear incentive contracts have received extensive research attention.

The seminal work of Holmström and Milgrom (1987) considers a dynamic framework where output is pro-

duced gradually over time, the agent is aware of his own progress, and the principal pays the agent at the

end. Although the principal is allowed to use the entire history of output to determine the payment, the

optimal contract depends only on the number of realizations of each output level, and is linear in these

counts. In a continuous time version of their problem where the agent controls the drift of a multidimen-

sional Brownian motion, the optimal contract can be expressed as a linear function that depends only on
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the endpoint.3 However, the stationary structure of their model is critical for this linearity result,4 because

linear contracts provide the agent with constant incentives to move forward independent of her past perfor-

mance. In our model, the principal offers multiple contracts during the process, and exploration makes the

principal’s problem inherently non-stationary. Therefore, our paper considers a different form of foundation

for linear contracts. Furthermore, Diamond (1998) and Barron, Georgiadis, and Swinkels (2020) provide

arguments for linear contracts using static Bayesian frameworks.

More recently, pioneered by Carroll (2015), this issue has been investigated by a wave of research using

robust models of contract design, which demands contract performance to be robust to limited knowledge of

the environment. Carroll (2019) provides a comprehensive review of this approach, as well as an overview

of the evolving field of robust mechanism design that adopts many other notions of robustness. Most work

in robust contract design, however, analyzes static or one-shot models, which precludes the opportunity for

designers to better understand parts of the environment they do not know. While starting with nonquan-

tifiable uncertainty, designers may still be able to gradually gain a better understanding of the environment

in which they repeatedly engage through exploration. Our dynamic model provides the principal with the

opportunity to explore the unknown, in order to understand how the principal should design contracts that

are robustly optimal given this exploration opportunity.

As stated by Carroll (2019), “another challenge is that trying to write dynamic models with non-

Bayesian decision makers leads to well-known problems of dynamic inconsistency, except in special cases

(e.g., Epstein and Schneider (2003)). This may be one reason why there has been relatively little work to

date on robust mechanism design in dynamic settings.” Knowing the difficulty, we carefully specify the

principal’s “beliefs” in the second period of our two-period model to follow a recursive structure analogous

to Epstein and Schneider (2003), in order to avoid dynamic inconsistency issues.

This paper is relevant to the recent research that examines robust contracting in different organizational

environments. Specifically, Dai and Toikka (2022) analyze moral hazard in teams, Marku, Ocampo, and

Tondji (Forthcoming) study a common agency model, and Carroll and Bolte (2023) investigate a model

with double moral hazard. Walton and Carroll (2022) provide a general framework that goes beyond simple

bilateral relationships and allows for rich internal organizational structures. Our model analyzes a simple

contracting environment, and aims to capture the main issue in terms of exploration. In particular, due to

exploration, the analysis of our dynamic model cannot be directly derived using the conclusions in Walton

3Following Holmström and Milgrom (1987), Sung (1995) further shows that the optimal contract can still be linear when the
agent controls the variance; Hellwig and Schmidt (2002) provide discrete time approximations of the continuous time model.

4For example, Schättler and Sung (1993) show that a time-dependent technology makes the optimal contract nonlinear.
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and Carroll (2022).5

The revealed preference reasoning in this paper is related to the recent work by Burkett and Rosenthal

(2023) and Antic and Georgiadis (2023), who consider a static robust contracting problem with revealed

preference data. In Burkett and Rosenthal (2023) and Antic and Georgiadis (2023), the principal’s only

knowledge is the agent’s best responses to a finite number of given contracts, and she seeks to maximize

her worst-case payoffs over all action sets that can rationalize the data. In the second period of our model,

the principal’s additional knowledge is exactly the first agent’s best response to the first-period contract.

Therefore, our second-period characterization contains a compensation component similar to their results.

However, our model differs in that the principal also initially knows certain available action(s), so the struc-

ture of the optimal contracts is not exactly the same.6 More importantly, in their settings, the principal’s

revealed preference data are exogenously provided, whereas our model places a significant emphasis on

endogenizing this aspect through the optimal exploration design in the first period.

From a broader perspective, Marku, Ocampo, and Tondji (Forthcoming) and Carroll and Bolte (2023)

are in a similar spirit to our work on how the designers’ robust objectives interact with their policy choices.

In Marku, Ocampo, and Tondji (Forthcoming), several principals compete to contract with a common agent.

In Carroll and Bolte (2023), the principal faces the choice of supplying input in the process of contracting

with an agent. However, the maxmin objective in both studies is applied only once, whereas in our model

it needs to be used in each of the two periods. In the area of informationally robust mechanism design,

Libgober and Mu (2023) study durable good monopoly without commitment, and introduce the notion of

dynamically-consistent worst-case information structure.

A number of other recent papers considering static models of robust contracts are related to our work,

because the principal is aware of some additional characteristics of the unknown actions in addition to the

concern that they may exist. As with Kambhampati (2024), who studies performance evaluation of agents,

although we do not place any restrictions on the possible action sets of an individual agent, we assume that

the two agents have identical action sets. However, our assumption is for a different reason, in order to make

the principal’s observations of chosen actions valuable. In addition, Antic (2021) assumes a lower bound

on the productivity of all unknown actions of the principal. Furthermore, in Dütting, Roughgarden, and

Talgam-Cohen (2020), the principal only knows the first moment of the distribution over output induced by

5We articulate the specific differences between our dynamic model and the general static framework in Walton and Carroll
(2022) in Subsection 4.2.

6Another reason for similar but not identical results is due to the assumption on the observed actions: Burkett and Rosenthal
(2023) and Antic and Georgiadis (2023) assume that the distribution of output (but not the effort cost) associated with the best
response is observed. Instead, we assume that both the distribution and the cost are observed, as we believe this is more consistent
with the assumption on the principal’s initial knowledge.
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each possible action, but not the full distribution.

The rest of the paper is organized as follows. Section 2 lays out the baseline model, and analyzes

the case of independent technology. The first main part, Section 3, analyzes the case of advancing technol-

ogy, and show that linear contracts are robustly optimal period-by-period. The second main part, Section

4, then analyzes the case of constant technology and shows that, although optimal second-period contracts

may be nonlinear in some cases following nonlinear first-period contracts, linear first-period contracts max-

imize the overall payoff guarantee, ensuring that optimal second-period contracts remain linear on the path.

Section 5 concludes. Appendix A contains the proofs of all results in the main text. Appendices B and C

present further results.

2 Model

2.1 Notation

We denote by ∆ (X) the set of (Borel) probability measures on a set X ⊆ R, equipped with the weak topology.

For x ∈ X, we write δx for the degenerate distribution that puts probability one on x.

2.2 Setup

The baseline model is a two-period moral hazard problem, consisting of a principal (she) and two agents

(he). The principal contracts with each agent sequentially to provide incentives, and the reservation payoff

of the agents is zero. All parties are assumed to be risk neutral. The principal’s discount factor is β ∈ (0,∞).

In each period (t = 1, 2), agent t takes a costly action that results in a stochastic output. The realized

output y belongs to a set Y of possible output values. Assume Y is a compact subset of R, either finite or

infinite, and normalize the lowest possible output to zero: min (Y) = 0.

An action of the agents, a, is a modeled as a pair a = (F, c) ∈ ∆ (Y) × R+, with the interpretation that if

an agent chooses action a, he incurs cost c, and output is drawn y ∼ F. We equip ∆ (Y)×R+ with the natural

product topology.

A techonology is a (nonempty and) compact set of possible actions. Agent t has technology At ⊆

∆ (Y) × R+, which only they know but the principal does not. The principal general compact set A0 of

available actions. To ensure that the principal may benefit from contracting with the agents, assume that

there exists (F, c) ∈ A0 such that EF
[
y
]
− c > 0.7

7Note that it is necessary for the principal to know at least one action that guarantees a strictly positive surplus, because otherwise
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To capture the idea of exploration, assume that the principal observes the action chosen by agent 1,

and then offers a new contract to agent 2 based on this knowledge. The chosen action itself, however, is not

contractible.8 Payments to the agents can only depend on the realized output, y.

Assume that the agents have limited liability, so the payment to them can never be strictly negative. A

contract is a continuous9 function w : Y → R+ such that w (0) = 0. One foundation for w (0) = 0 is two-

sided limited liability,10 which also requires that the contracts never pay more than output: 0 ≤ w (y) ≤ y

for all values of y. We do not explicitly impose two-sided limited liability, but only view it as a possible

explanation for w (0) = 0.11

The timing within each period t is summarized as follows:

1. The principal offers a contract wt.

2. Agent t chooses at = (Ft, ct) ∈ At, or quits the relationship (zero payoff for both parties).

3. Output yt ∼ Ft is realized.

4. Payoffs yt − wt (yt) to the principal and wt (yt) − ct to agent t.

The principal’s objective is to maximize her worst-case expected discounted sum of payoffs over all

possible technologies. Therefore, it is crucial to articulate what actions the principal considers possible in

each period, and to determine how the principal’s beliefs about unknown actions are updated across periods.

Addressing this critical gap in the existing literature, we introduce and compare three distinct notions of

dynamic worst-case considerations: (i) independent technology A1 ⊥ A2, (ii) advancing technology A1 ⊆ A2,

and (iii) constant technology A1 = A2.

it is always possible that the agents are not able to produce anything of value.
8It is a strong assumption that the chosen action becomes observable to the principal, especially since F represents a distribution.

One interpretation is that each period summarizes (the “average” state of) a horizon for which the contract needs to remain fixed,
while the agent is repeatedly taking action. During this process, the principal can keep observing him and figure out what action
must be taken, in particular what F and c are. However, knowing that the action exists is still not the same as being able to write it
into a contract. The action itself may be too complex to be accurately described in contract terms, or its inclusion into the contract
may be directly prohibited by law.

9The continuity assumption is made only to ensure the existence of best responses of the agents. This assumption becomes
vacuous if Y is a finite set, and can also be weakened to upper semicontinuity with additional verifications. See also Carroll (2015,
footnote 1), Walton and Carroll (2022, footnote 3), Carroll and Bolte (2023, footnote 1).

10See also Burkett and Rosenthal (2023, Definition 6).
11Another foundation for w (0) = 0 is the standard free disposal condition, plus a lowest support condition on the agents’ possible

actions. We say a technology A satisfies the lowest support condition if, for all (F, c) ∈ A, the lowest output 0 is in the support
of F. Under these two conditions, the principal will only offer contracts with w (y) ≥ w (0) for all y, because otherwise the agent
may discard output to receive more payments. Given limited liability, it is then without loss of generality to focus on contracts with
w (0) = 0, since a constant shift does not affect the agent’s incentives, but only increases the principal’s payoff. That is, if w (0) > 0,
let w̃ (y) = w (y) − w (0) ≥ 0 be another valid contract. the agent’s chosen action does not change if the principal instead offers w̃,
but this increases the principal’s payoff by w (0).
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In the following sections, we define a suitable rule of updating within each notion and characterize

the principal’s optimal payoff guarantee. The conclusion is that linear contracts are robustly optimal in all

three notions. To better understand the connections and distinctions among the three notions, it is helpful

to imagine there is an adversarial “nature” that selects the technology for the corresponding agent in each

period to minimize the principal’s payoff. The three notions differ in the restrictions imposed on the moves

available to nature across periods.

2.3 Independent Technology

We begin by considering the case of independent technology A1 ⊥ A2, where the technology of the two

agents A1 and A2 are not related; in other words, nature has the flexibility to select the technology for each

agent independently. In this case, the choice made by agent 1 does not yield any information for the principal

regarding the potential actions agent 2 might take. Therefore, the learning aspect is essentially nullified, and

the principal’s overall payoff guarantee is maximized by adopting a straightforward approach: offering the

optimal static contract identified by Carroll (2015) in both periods.

We briefly recap the analysis in Carroll (2015), as it lays the foundation for subsequent analyses. It

is relatively straightforward to describe the behavior of the agents. In each period t, given contract w and

technology A, agent t chooses an action (F, c) ∈ A to maximize his expected utility, so the best response

correspondence is given by

BR (w|A) ≡ arg max
(F,c)∈A

{
EF

[
w (y)

]
− c

}
.

The principal’s single-period expected payoff under technology A is denoted by

V (w|A) ≡ max
(F,c)∈BR(w|A)

EF
[
y − w (y)

]
,

where we assume ties are broken in the principal’s favor if the agent is indifferent among several actions.12

The principal’s objective is to choose a contract w to maximize her worst-case expected payoff

V(w) ≡ inf
A⊇A0

V (w|A) .

12This tie-breaking assumption ensures the existence of optimal contracts, and minimizes the departure from standard models.
Other tie-breaking rules will lead to essentially the same results, but may introduce technical complications. For example, the
principal’s optimal payoff guarantee may be approached, but not achieved, by linear contracts. See also Carroll (2015, Section D),
Dai and Toikka (2022, footnote 4), Carroll and Bolte (2023).
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The key result of Carroll (2015) is that the principal’s optimal single-period payoff guarantee, maxw V(w),

is attained by a linear contract w (y) = sy. Specifically, the solution to the principal’s static problem can be

summarized as follows:

1. Maximize
√
EF[y] −

√
c over (F, c) ∈ A0, with solution a∗ = (F∗, c∗).

2. Set s∗ =
√

c∗/EF∗
[
y
]

as the share, and offer linear contract w (y) = s∗y.

The resulting optimal guarantee is equal to
( √
EF∗[y] −

√
c∗

)2
. Consequantly, in the case of independent

technology, the principal’s overall payoff guarantee is maximized by offering w1(y) = w2(y) = s∗y, and is

equal to (1 + β)
( √
EF∗[y] −

√
c∗

)2
.

3 Advancing Technology

The case of independent technology might be overly pessimistic, as it completely prevents the principal from

learning about the technology through agent 1’s actions. Essentially, with no restriction on nature’s moves,

the principal is hindered from learning through exploration. In this section, we analyze the first restriction

that facilitates meaningful exploration: the case of advancing technology A1 ⊆ A2. Here, the technology

may advance between periods, but cannot downgrade. In other words, nature can only introduce new actions

across periods, but is not allowed to delete old ones.

The main result for the case of advancing technology is Theorem 1, which shows that linear contracts

are robustly optimal period-by-period. That is, linear contracts are also optimal in terms of utilizing the

exploration opportunity, making them even more robust.

3.1 Rule of Updating and Second Period Analysis

As in the previous case of independent technology, the principal maximizes her worst-case expected dis-

counted sum of payoffs over all possible technologies. In the first period, she believes that agent 1’s tech-

nology A1 could be any technology such that A1 ⊇ A0. Taking into account possible technological advances

after the first period, the principal’s rule of updating is defined as follows:

After the principal offers contract w1 and observes the action a1 chosen by agent 1, she

believes that agent 2’s technology A2 could be any technology such that A2 ⊇ A0∪{a1}.
(1)

That is, the principal learns that action a1 exists in A1 (in addition to the initially known set A0), and believes

that agent 2 may also choose this action again (since A1 ⊆ A2). Moreover, this represents the best conjecture
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the principal can make in the second period, given that nature may introduce new actions that were not

present in the first period.

We solve the principal’s dynamic problem via backward induction. With the update rule (1), the prin-

cipal’s second-period problem simplifies to a single-period problem in Carroll (2015). Specifically, in the

second period, the principal chooses a second-period contract w2 to maximize her worst-case payoff

V2 (w2|a1) ≡ inf
A2⊇A0∪{a1}

V (w2|A2) .

Applying Carroll (2015)’s result to the updated knowledge on technology, we conclude that the optimal

second-period contract is linear, and the resulting optimal second-period payoff guarantee is V∗2 (a1) =

Φ (a1)2, where

Φ (a1) ≡ max
a∈A0∪{a1}

{ √
EFa[y] −

√
ca

}
. (2)

Note, here and throughout the analysis below, we denote the output distribution and cost associated with any

generic action a by Fa and ca, respectively.

3.2 First Period Analysis

Going back to the first period, if the principal offers the first-period contract w1 and agent 1 chooses action

a1 = (F1, c1), her interim payoff guarantee, defined as her payoff in the first period plus the discounted

optimal second-period payoff guarantee, is given by

U (w1|a1) ≡ EF1

[
y − w1 (y)

]
+ β · V∗2 (a1) .

Since she believes that agent 1’s true technology A1 could be any technology such that A1 ⊇ A0, her overall

payoff guarantee, defined as the worst-case interim payoff guarantee over all possible technologies A1, is

given by

U (w1) ≡ inf
A1⊇A0

{
max

a1∈BR(w1 |A1)
U (w1|a1)

}
,

where, once again, we assume ties are broken in her favor.

The principal’s first-period problem is to choose a first-period contract w1 to maximize her overall

payoff guarantee U (w1). We are now ready to state the main result for this section, Theorem 1, which

shows the maximum exists and is achieved by a linear contract.
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Theorem 1. In the case of advancing technology, there exists a linear first-period contract w1 that maximizes

the principal’s overall payoff guarantee U (w1).

Even with the opportunity to use the first-period contract as a means of exploration, no other more

complicated form of contracts provides the principal with a better payoff guarantee than linear ones.

The proof of Theorem 1 boils down to two steps. The first step, Lemma 1, shows that any nonlinear

first-period contract is outperformed by some linear one. The second step, Lemma 2, further shows that the

maximum of the principal’s first-period problem exists within the class of linear first-period contracts.

3.2.1 Proof Step 1: Improving Nonlinear Contracts

We start from any arbitrary first-period contract w1, and construct another linear contract ŵ1 that provides

the principal with a weakly higher overall payoff guarantee. Thus, any nonlinear contract can be improved

by a linear one.

For any first-period contract w1, let (F0, c0) ∈ A0 be agent 1’s best response when his technology is A1

is just the initially known A0, and let ŵ1 denote the following linear contract:

ŵ1 (y) = s1y with s1 =
EF0

[
w1 (y)

]
EF0

[
y
] ≥ 0. (3)

The procedure of constructing the linear ŵ1 is depicted in Figure 1. The solid curve represents first-period

Realized output, y

Payment to agent,w(y)

0

EF0 [w1(y)]

EF0 [y]s1

w1(y)
w

1(y)

Figure 1: The linear contract ŵ1 constructed from w1.

contract w1, which may be nonlinear and non-monotonic. Consider the point
(
EF0

[
y
]
,EF0

[
w1 (y)

])
, whose
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coordinates are the expected output and the expected payment to agent 1 if he takes action a0 = (F0, c0).

This point must lie within the convex hull of the curve w1, represented by the shaded area in the figure.

The constructed linear contract ŵ1 is exactly the dashed line connecting the origin and this point, with a

corresponding slope denoted by s1.

Note that the linear contract ŵ1 is chosen such that if agent 1 takes the action a0, his payoff will be

exactly equal under ŵ1 as under w1:

EF0

[
ŵ1 (y)

]
− c0 = s1EF0

[
y
]
− c0 = EF0

[
w1 (y)

]
− c0.

We will show that the principal’s overall payoff guarantee is at least as high under ŵ1 as it is under w1; that

is, U (ŵ1) ≥ U (w1).13

Lemma 1. Let w1 be any first-period contract. The linear contract ŵ1 defined by equation (3) satisfies

U (ŵ1) ≥ U (w1).

Proof. All proofs of the results in the main text are in Appendix A. �

Suppose the principal offers the linear first-period contract ŵ1, and agent 1 chooses action a1 from

the true technology A1. We need to show that the principal’s interim payoff guarantee, U (ŵ1|a1), is at least

U (w1). If there exists another action a′1, which may be taken by agent 1 under w1 and some other technology

A′1, such that

U (ŵ1|a1) ≥ U
(
w1

∣∣∣a′1) (4)

holds, then U (ŵ1|a1) ≥ U
(
w1

∣∣∣a′1) ≥ U (w1), and thus the desired conclusion is established. The proof of

Lemma 1 explicitly constructs such an alternative action a′1 for each possible a1.

Specifically, the principal’s interim payoff guarantee consists of two parts, her payoff in the first period,

plus the discounted optimal second-period payoff guarantee. The characterization of the second part in the

previous subsection is crucial for the construction of a′1, enabling the desired inequality (4) to hold period

by period: under (ŵ1|a1), the principal’s payoff in the first period and her guarantee in the second period are

both higher than under
(
w1

∣∣∣a′1).
By establishing Lemma 1, we have shown that any nonlinear first-period contract can be improved

by a linear one. To finalize the proof of Theorem 1, it suffices to show that, within the class of linear
13Unlike the main text of Carroll (2015), which uses linear relations between the principal’s and agent’s payoffs to characterize

the payoff guarantee of any contract, this is an adaptation of the alternative approach suggested by Lucas Maestri in Carroll (2015,
Appendix C) to the two-period model.

14



contracts, the maximum of U (w1) exists. We will set up a program that characterizes the principal’s overall

payoff guarantee of an arbitrary linear first-period contract, and prove the existence of maximum through its

continuity in the first-period share.

3.2.2 Proof Step 2: Payoff Guarantee of a Linear Contract

To conclude the proof of Theorem 1, we need to establish the following Lemma 2.

Lemma 2. Within the class of linear first-period contracts, there exists an optimal one for the principal.

The proof of Lemma 2 requires characterizing the overall payoff guarantee of an arbitrary linear first-

period contract, which is the main focus here.

Assume the principal offers a linear first-period contract w1(y) = s1y with s1 ∈ [0, 1], and agent 1

chooses a1 = (F1, c1) in response. The principal’s optimal second-period payoff guarantee V∗2 (a1) = Φ (a1)2,

with Φ defined by equation (2). Thus, her interim payoff guarantee is

U (w1|a1) = EF1

[
y − w1(y)

]
+ β · V∗2 (a1) = (1 − s1)EF1[y] + β · Φ (a1)2 .

The worst-case overall payoff guarantee minimizes the above expression over all a1 that agent 1 may choose

under some technology A1. Note that agent 1 prefers action a1 over all known actions a ∈ A0 if and only if

(
EF1

[
w1(y)

]
− c1

)
−

(
EFa

[
w1(y)

]
− ca

)
=

(
s1EF1[y] − c1

)
−

(
s1EFa[y] − ca

)
≥ 0, ∀a ∈ A0.

Moreover, agent 1 obtains at least his reservation payoff of zero, which can also be viewed as his payoff

from the null action (δ0, 0) that produces zero output at zero cost. Hence, the following program yields a

lower bound on the principal’s overall payoff guarantee

inf
F1,c1

(1 − s1)EF1

[
y
]
+ β · Φ (F1, c1)2

s.t.
(
s1EF1[y] − c1

)
−

(
s1EFa[y] − ca

)
≥ 0, ∀a ∈ A0 ∪ {(δ0, 0)} ,

(5)

because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by

program (5).

Conversely, for any feasible a1 = (F1, c1) in program (5), agent 1 would take action a1 in response to

w1 when his technology A1 = A0 ∪ {a1}. The worst case over all such technologies leaves the principal with

exactly her interim payoff guarantee, U (w1|a1) = (1 − s1)EF1

[
y
]
+β ·Φ (a1)2. Thus, if a solution to program
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(5) exists (i.e., if infimum may be replaced by minimum), then the principal’s payoff guarantee cannot be

strictly higher than its minimum value.

The above analysis shows that the worst-case overall payoff guarantee of any linear first-period contract

w1 (y) = s1y is exactly characterized by program (5). In the proof of Lemma 2 in Appendix A.1, we formally

show the existence of minimum in this program, and its continuity in the first-period share s1. We first

reformulate program (5) as an equivalent maximization problem with continuous objective function and

compact feasible region, and then invoke Berge’s maximum theorem to prove the required existence and

continuity. Since the overall payoff guarantee of a linear first-period contract w1 (y) = s1y is continuous in

the first-period share s1, it achieves a maximum. This maximum is also the optimal guarantee over all linear

contracts.

Specifically, under a linear first-period contract w1, the expression of V∗2 (a1) = Φ (a1)2 given by equa-

tion (2) gets simplified, thus showing that both the objective and the constraint of program (5) depend on the

choice variables (F1, c1) only through the value of
(
EF1

[
y
]
, c1

)
, and are continuous. To complete the proof,

we only need to show that the value of
(
EF1

[
y
]
, c1

)
can be restricted to a compact region without affecting

the infimum value of program (5), and that region changes in a continuous14 manner when the first period

share s1 changes.

Combining Lemmas 1 and 2, we prove the main result of this section, Theorem 1, which establishes

the optimality of a linear first-period contract.

4 Constant Technology

In the previous section, we have focused on the case of advancing technology (A1 ⊆ A2) and show that linear

contracts are robustly optimal period-by-period in that notion of dynamic worst-case consideration. This

section analyzes an alternative notion with more restrictions: the case of constant technology A1 = A2 = A.

Here, the two agents have the same action set unknown to the principal. In other words, nature can neither

introduce new actions across periods nor delete old ones.

For simplicity of exposition, assume the principal knows only one action a0 = (F0, c0) ∈ A available to

the agents, with EF0[y]− c0 > 0. In Appendix B, we show that analogous results hold if the principal knows

a general set of know actions A0 as in the baseline model.

The main result for the case of constant technology is Theorem 2, which shows that linear contracts

are robustly optimal in both periods, although not period-by-period. Specifically, second period analysis

14In the language of correspondences, both upper and lower hemicontinuous.
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(Subsection 4.2) shows that, following nonlinear first-period contracts, optimal second-period contracts may

also be nonlinear in some cases. Nonetheless, upon backward induction to the first period (Subsection 4.3),

it is robustly optimal to use linear first-period contracts, so optimal second-period contracts are also linear on

the path. The reason for obtaining different results compared to the previous case of advancing technology

is due to a different and more subtle rule of updating, which we refer to as compatibility (Definition 1).

4.1 Rule of Updating: Compatibility

As in the previous two cases, the principal maximizes her worst-case expected discounted sum of payoffs

over all possible technologies. In the first period, she only knows the action a0, and believes that the true

technology A could be any technology such that A 3 a0. After the principal offers contract w1 and observes

the action a1 chosen by agent 1, a rule of updating needs to be specified to determine the technologies that

the principal considers possible. We say those possible technologies compatible with (w1, a1), formally

defined as follows.15

Definition 1 (Compatible). Given w1 and a1 = (F1, c1), a technology A is compatible with (w1, a1) if

1. A ⊇ {a0, a1}.

2. EF
[
w1 (y)

]
− c ≤ EF1

[
w1 (y)

]
− c1 for all (F, c) ∈ A.

Roughly speaking, a technology A is compatible with (w1, a1) if it contains a1 (in addition to a0),

and does not contain any action strictly better than a1 under w1. The first requirement in Definition 1

indicates that the principal learns that action a1 exists (in addition to the initially known a0), and believes

that agent 2 may also take this action again. The second requirement in Definition 1 captures the additional

inference she can draw from agent 1’s rationality in this case of constant technology: the true technology

A cannot contain any action (F, c) that leads to a strictly higher payoff for agent 1, i.e., it is impossible that

EF
[
w1 (y)

]
− c > EF1

[
w1 (y)

]
− c1.

The principal’s dynamic problem is again solved via backward induction. In the second period, since

the principal believes that A could be any technology compatible with (w1, a1), her problem is to choose a

second-period contract w2 to maximize her worst-case payoff:

V2 (w2|w1, a1) ≡ inf
A compatible with (w1,a1)

V (w2|A) .

15This is an analogue of consistency in solution concepts like perfect Bayesian equilibrium.
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Note that this is not a direct adaptation of the single-period problem in Carroll (2015) (where A could be any

technology containing {a0, a1}), precisely because of her additional inference from agent 1’s rationality in

the definition of compatibility, which rules out the possibility that certain actions exist in A. In Subsection

4.2, we characterize the principal’s optimal second-period payoff guarantee, V̂∗2 (w1, a1), showing that this

distinction matters. The maximum always exists, as we identify the contract that attains it; however, it may

be achieved by a nonlinear w2 if the corresponding w1 is nonlinear.

Going back to the first period, if the principal offers first-period contract w1 and the true technology A

is such that agent 1 chooses action a1 = (F1, c1), her interim payoff guarantee is given by

Û (w1|a1) ≡ EF1

[
y − w1 (y)

]
+ β · V̂∗2 (w1, a1) .

Since she believes that the true technology A could be any technology such that A 3 a0, her overall payoff

guarantee is given by

Û (w1) ≡ inf
A3a0

{
max

a1∈BR(w1 |A)
Û (w1|a1)

}
,

where again we assume ties are broken in her favor.

The principal’s first-period problem is to choose a first-period contract w1 to maximize her overall

payoff guarantee. In Subsection 4.3, we show the maximum exists and is achieved by a linear contract.

4.2 Second Period Analysis

We begin our analysis with the second period of the dynamic relationship, where the principal has offered

some first-period contract w1 and observed agent 1’s selected action a1. We fully characterize the principal’s

optimal second-period payoff guarantee, V̂∗2 (w1, a1), and identify the contract that attains it in various cases.

The analysis reveals four ways the principal may respond to the knowledge gained from observing a1, and

in particular shows that if w1 is nonlinear, then the optimal second-period payoff guarantee may be achieved

by a nonlinear w2.

The main result for the second period analysis is Lemma 3, which shows that V̂∗2 (w1, a1) is achieved

by offering the best among four contracts: (i) the first-period contract w1 again, (ii) a modified w1 with

compensation for agent 2, and (iii) & (iv) two linear contracts that correspond to the optimal static contracts

in Carroll (2015). As long as the first-period contract w1 is nonlinear, and the observed action a1 is such that

one of the first two contracts is optimal, then V̂∗2 (w1, a1) is achieved by nonlinear contracts.

Lemma 3 reveals that the analysis in this section is not a direct adaptation of the single-period problem

in Carroll (2015), since optimal contracts may not be linear. This difference is precisely due to the second
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requirement of compatibility, where the principal draws additional inferences from the rationality of agent 1,

excluding certain actions. Note that the analysis is also not covered by the recent work of Walton and Carroll

(2022), which establishes a general static framework that allows for rich organizational structures, and

identifies two properties of the counterparty’s possible responses which jointly imply that a linear contract

solves the principal’s single-period maxmin problem. Specifically, their Richness property requires that the

set of possible responses to a given contract be sufficiently and unboundedly broad. The Richness property

is violated in the case of constant technology exactly because of the principal’s exploration and inference in

the first period, since the true technology cannot contain any action that is strictly better for agent 1 than the

observed action under the first-period contract.16

Suppose that in the first period the principal offers contract w1 and observes agent 1’s action a1 =

(F1, c1). She learns that the true technology A is compatible with (w1, a1); that is, it contains a0 and a1, and

does not contain any action strictly better than a1 for agent 1 under w1.

In the second period, if she offers the same contract w2 = w1, then she knows that agent 2 will choose

a1 again because the two agents have the same technology. This exactly repeats her first-period payoff

EF1

[
y − w1 (y)

]
in the second period. Part 1 of Lemma 3 below shows that, in some cases, doing so is

already optimal for the principal, which means that an optimal second-period contract may be nonlinear

following nonlinear first-period contracts.

Offering the same contract again is only one response of the principal to the knowledge gained by

observing a1, and there are plenty of other possible responses. For example, if the initially known action

a0 may lead to a higher payoff for the principal (i.e., EF0

[
y − w1 (y)

]
> EF1

[
y − w1 (y)

]
), then it might be

tempting for the principal to try to obtain the payoff EF0

[
y − w1 (y)

]
instead. However, achieving this payoff

requires the principal to use w1 to induce action a0, and this would violate agent 2’s incentive constraint.

Indeed, in the first period, the chosen action a1 provides agent 1 with a (weakly) higher payoff compared to

the known action a0, and this relationship gets transferred to the second period because both agents have the

same technology. This gives rise to the following notion of the incentive gap.

Definition 2 (Incentive gap). Given w1 and a1 = (F1, c1), the incentive gap, g (w1, a1), denotes the difference

16The other property in Walton and Carroll (2022), Responsiveness, indicates that the counterparty’s behavior is responsive
to the incentive provided by expected payment, and allows comparison of the principal’s payoff guarantees from two different
contracts. The Responsiveness property is satisfied in our model. As a converse result, Walton and Carroll (2022) also show that
Responsiveness is necessary for linearity under a strengthened version of Richness. This result is in parallel with our analysis, since
it is Richness that is not satisfied in our model.
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in agent 1’s payoff between choosing a1 and a0. Formally,

g (w1, a1) ≡
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
.

If the principal wants to induce action a0 using a contract “similar to” w1, then agent 2 needs to

be compensated for not choosing a1, and the amount of compensation increases with the incentive gap

g (w1, a1). Part 2 of Lemma 3 shows that the incentive gap sometimes becomes a real cost. Specifically, if

EF0

[
y − w1(y)

]
> g (w1, a1), then the principal can offer to agent 2 a modified version of w1 with compensa-

tion in order to guarantee that her payoff in the second period is at least
( √
EF0

[
y − w1 (y)

]
−

√
g (w1, a1)

)2
.

Moreover, the proof of Lemma 3 shows that this is the optimal payoff guarantee using a modified version

of w1. Note that if the incentive gap is small, this value becomes close to EF0

[
y − w1(y)

]
, and may be better

for the principal than simply offering w2 = w1 again.

After observing a1, the principal learns that the true technology A must contain {a0, a1}. If the principal

ignores the second requirement of compatibility (Definition 1) and applies the single-period problem in Car-

roll (2015), her optimal guarantee would be equal to
(
max

{ √
EF0[y] −

√
c0,

√
EF1[y] −

√
c1

})2
, achieved by

offering the better one of the two linear contracts, w2 (y) = s2y with s2 =
√

c0/EF0

[
y
]

or s2 =
√

c1/EF1

[
y
]
.

With the additional inference in place, the guarantee from this procedure can only increase. Parts 3 and

4 of Lemma 3 show that, when this payoff guarantee is larger than the previous two cases (w1 again, or a

modified w1 with compensation), it is optimal for the principal to offer the better of the two linear contracts,

and doing so exactly attains this payoff guarantee.

We are now ready to present the main result of this subsection, Lemma 3, which establishes the opti-

mality of the aforementioned contracts. The principal’s optimal second-period payoff guarantee is achieved

by offering the best among the four contracts described above: w1 again, modified w1 with compensation,

and the two linear contracts.

Lemma 3. Suppose the principal offers first-period contract w1, and agent 1 chooses a1 = (F1, c1) in

response. The principal’s optimal second-period payoff guarantee is V̂∗2 (w1, a1) = Φ̂ (w1, a1)2, where

Φ̂ (w1, a1) ≡ max
{√
EF1

[
y − w1(y)

]
,

√
EF0

[
y − w1(y)

]
−

√
g (w1, a1),

√
EF0[y] −

√
c0,

√
EF1[y] −

√
c1

}
(with

√
x = −∞ for x < 0 by convention). (6)

Specifically,

1. If
√
EF1

[
y − w1 (y)

]
attains the maximum in equation (6), then the principal’s optimal second-period
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payoff guarantee is achieved by w2 = w1.

2. If
√
EF0

[
y − w1 (y)

]
−

√
g (w1, a1) attains the maximum in equation (6), then the principal’s optimal

second-period payoff guarantee is achieved by

w2 (y) = w1 (y) + m · (y − w1 (y)) with m =

√
g (w1, a1)

EF0

[
y − w1 (y)

] ∈ [0, 1] . (7)

3. If
√
EF0[y] −

√
c0 attains the maximum in equation (6), then the principal’s optimal second-period

payoff guarantee is achieved by w2 (y) = s2y with s2 =
√

c0/EF0

[
y
]
.

4. If
√
EF1[y] −

√
c1 attains the maximum in equation (6), then the principal’s optimal second-period

payoff guarantee is achieved by w2 (y) = s2y with s2 =
√

c1/EF1

[
y
]
.

The proof of Lemma 3 mainly consists of two parts. The first part is to prove that, when each element

in the quadruple defined by equation (6) attains the maximum, the principal’s payoff guarantee in the second

period from offering the corresponding contract is exactly as claimed in the statement of Lemma 3. This

requires providing lower bounds on the principal’s second-period payoffs, and constructing worst-case tech-

nologies to show that the bounds are tight. The second part is to show that, under arbitrary second-period

contracts, the principal’s payoff guarantee is not strictly higher than Φ̂ (w1, a1)2. This requires construct-

ing worst-case technologies to show that the payoff guarantee is lower than (the square of) at least one of

element in the quadruple.

Note that compared to the case of advancing technology, the principal acquires more knowledge from

the observation of a1 under constant technology. As an implication, her optimal second-period payoff guar-

antee takes a more complex form that depends directly on the first-period contract w1: how you exploit is

related to how you explore.

Lemma 3 indicates that, as long as the first-period contract w1 is nonlinear, and the observed action a1

is such that one of the first two elements in the quadruple defined by equation (6) attains the maximum, then

the principal’s optimal second-period guarantee V̂∗2 (w1, a1) is achieved by nonlinear contracts. On the other

hand, for linear first-period contracts w1, the four contracts mentioned in the statement of Lemma 3 are all

linear. This shows that optimal way for the principal to respond to the knowledge gained is closely related

to the specific approach she chooses to explore in the first period.
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4.3 First Period Analysis

In the previous subsection, we have focused on principal’s problem in the second period and fully character-

ized her optimal second-period payoff guarantee. This section analyzes the principal’s first-period problem

in the dynamic relationship, that is, choosing a first-period contract w1 to maximize her overall payoff guar-

antee Û (w1).

We first state the main result of this section, Theorem 2, which establishes the optimality of a linear

first-period contract.

Theorem 2. In the case of constant technology, there exists a linear first-period contract w1 that maximizes

the principal’s overall payoff guarantee Û (w1).

The principal’s optimal overall payoff guarantee is achieved through a linear first-period contract, to-

gether with an optimally chosen linear second-period contract.

Similar to Theorem 1, the proof of Theorem 2 takes two steps: (1) improve any nonlinear first-period

contract to a linear one; (2) prove that the maximum of the principal’s first-period problem exists within

the class of linear first-period contracts. Since the principal’s optimal second-period payoff guarantee in the

previous subsection takes a more complicated form (equation (6)), the proof here is more lengthy, but the

main idea remains the same. In particular, the closed-form characterization is very useful. First, it provides

a tool to compare the overall payoff guarantee between different first-period contracts, essential for showing

that any nonlinear first-period contract can be improved by a linear one. Second, the expression (6) is the

maximum of four continuous functions (in the appropriate sense of continuity), and the continuity is key to

show existence of an optimal linear contract.

Although Lemma 3 shows that, following nonlinear first-period contracts, optimal second-period con-

tracts may also be nonlinear in some cases, here we demonstrate that he principal’s optimal overall payoff

guarantee is achieved by a linear first-period contract (along with an optimally chosen linear second-period

contract). The principal has the opportunity to explore in the first period, and linear first-period contracts

are optimal in terms of utilizing the exploration opportunity, making them even more robust.

5 Conclusion

In this paper, we study a two-period moral hazard problem, where the principal does not know the action

sets available to the agents and demands contracts to be robust to this uncertainty; she has the opportunity

to explore in the first period and observes the chosen action, and then offers a new contract to the second
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agent based on this knowledge. We introduce and compare three different notions of dynamic worst-case

considerations. Within each notion, we define a suitable rule of updating and characterize the principal’s

optimal payoff guarantee, thereby identifying how the principal should respond to knowledge and design

new contracts. The results show that linear contracts are robustly optimal not just in static settings, but also

in dynamic environments with exploration.

We consider a contribution of this paper to propose possible ways to extend robust models in mech-

anism design to allow for multiple interactions and exploration. Despite the presence of nonquantifiable

uncertainty, designers can gradually improve their understanding of the environment in which they repeat-

edly engage, using the appropriate rule of updating. We hope the generalizability of this approach across

other models will be further explored in future work.

References

Antic, Nemanja, (2021). “Contracting with Unknown Technologies.” Working paper.

Antic, Nemanja and George Georgiadis, (2023). “Robust Contracts: A Revealed Preference Approach.”

Working paper.

Barron, Daniel, George Georgiadis, and Jeroen M. Swinkels, (2020). “Optimal Contracts with a Risk-taking

Agent.” Theoretical Economics 15 (2):715–761.

Burkett, Justin and Maxwell Rosenthal, (2023). “Data-Driven Contract Design.” Working paper. Available

at SSRN: https://ssrn.com/abstract=4672184.

Carroll, Gabriel, (2015). “Robustness and Linear Contracts.” American Economic Review 105 (2):536–63.

———, (2019). “Robustness in Mechanism Design and Contracting.” Annual Review of Economics

11 (1):139–166.

Carroll, Gabriel and Lukas Bolte, (2023). “Robust Contracting under Double Moral Hazard.” Theoretical

Economics 18 (4):1623–1663.

Dai, Tianjiao and Juuso Toikka, (2022). “Robust Incentives for Teams.” Econometrica 90 (4):1583–1613.

Diamond, Peter, (1998). “Managerial Incentives: On the Near Linearity of Optimal Compensation.” Journal

of Political Economy 106 (5):931–957.

23

https://ssrn.com/abstract=4672184


Dütting, Paul, Tim Roughgarden, and Inbal Talgam-Cohen, (2020). “Simple versus Optimal Contracts.”

Working paper. Available at arXiv: https://arxiv.org/abs/1808.03713.

Epstein, Larry G. and Martin Schneider, (2003). “Recursive Multiple-Priors.” Journal of Economic Theory

113 (1):1–31.

Hellwig, Martin F. and Klaus M. Schmidt, (2002). “Discrete-Time Approximations of the Holmström-

Milgrom Brownian-Motion Model of Intertemporal Incentive Provision.” Econometrica :2225–2264.

Holmström, Bengt and Paul Milgrom, (1987). “Aggregation and Linearity in the Provision of Intertemporal

Incentives.” Econometrica :303–328.

Kambhampati, Ashwin, (2024). “Robust Performance Evaluation of Independent and Identical Agents.”

Working paper.

Libgober, Jonathan and Xiaosheng Mu, (2023). “Coasian Dynamics under Informational Robustness.”

Working paper. Available at arXiv: https://arxiv.org/abs/2202.04616.

Marku, Keler, Sergio Ocampo, and Jean-Baptiste Tondji, (Forthcoming). “Robust Contracts in Common

Agency.” The RAND Journal of Economics .

Schättler, Heinz and Jaeyoung Sung, (1993). “The First-Order Approach to the Continuous-Time Principal-

Agent Problem With Exponential Utility.” Journal of Economic Theory 61 (2):331–371.

Sung, Jaeyoung, (1995). “Linearity With Project Selection and Controllable Diffusion Rate in Continuous-

Time Principal-Agent Problems.” The RAND Journal of Economics :720–743.

Walton, Daniel and Gabriel Carroll, (2022). “A General Framework for Robust Contracting Models.” Econo-

metrica 90 (5):2129–2159.

Wilson, Robert, (1987). “Game-Theoretic Analyses of Trading Processes.” In Advances in Economic

Theory: Fifth World Congress, edited by Truman Fassett Bewley. Cambridge University Press, 33–70.

24

https://arxiv.org/abs/1808.03713
https://arxiv.org/abs/2202.04616


Appendix A Proofs of Results in the Main Text

A.1 Proofs for Section 3

Proof of Lemma 1. Consider an arbitrary action a1 = (F1, c1) agent 1 would take under contract ŵ1. We
need to show that the principal’s interim payoff guarantee, U (ŵ1|a1), is at least U (w1). Note that

U (ŵ1|a1) = EF1

[
y − ŵ1(y)

]
+ β · V∗2 (a1) ,

where V∗2 (a1) = Φ (a1)2 with

Φ (a1) = max
a∈A0∪{a1}

{ √
EFa[y] −

√
ca

}
.

It suffices to construct another action a′1, which may be taken by agent 1 under w1 and some other
technology, such that U

(
w1

∣∣∣a′1) ≤ U (ŵ1|a1). By assumption, a0 is agent 1’s best response if A1 = A0, so an
action a′1 may be taken by agent 1 under w1 if and only if his payoff from choosing a′1 is higher than from
choosing a0. Consider the following two cases.

Case 1. EF1

[
y
]
≥ EF0

[
y
]
.

Let a′1 = a0. When agent 1 takes action a0 in response to w1, the principal’s resulting payoff in the first
period is

EF0

[
y − w1(y)

]
= (1 − s1)EF0

[
y
]
≤ (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under (w1|a0) is weakly lower than under (ŵ1|a1).
Moreover, the principal’s optimal second-period payoff guarantee is V∗2 (a0) = Φ (a0)2 with

Φ (a0) = max
a∈A0

{ √
EFa[y] −

√
ca

}
.

By definition we have 0 < Φ (a0) ≤ Φ (a1), which implies V∗2 (a0) ≤ V∗2 (a1). The principal’s interim payoff

guarantee is

U (w1|a0) = EF0

[
y − w1(y)

]
+ β · V∗2 (a0)

≤ EF1

[
y − ŵ1(y)

]
+ β · V∗2 (a1) = Û (ŵ1|a1) ,

as desired.

Case 2. EF1

[
y
]
< EF0

[
y
]
.

Let λ = EF1[y]/EF0[y] ∈ [0, 1] and let F′1 be the mixture λF0 + (1 − λ) δ0. Note that EF′1

[
y
]

= EF1[y].

Consider a′1 =
(
F′1, c1

)
. Note that

EF′1

[
w1 (y)

]
− c1 = λEF0

[
w1 (y)

]
− c1 = λs1EF0

[
y
]
− c1 = s1EF1

[
y
]
− c1 = EF1

[
ŵ1 (y)

]
− c1,

and
EF0

[
w1 (y)

]
− c0 = s1EF0

[
y
]
− c0 = EF0

[
ŵ1 (y)

]
− c0.

Thus, (
EF′1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
=

(
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF0

[
ŵ1 (y)

]
− c0

)
≥ 0,
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implying that a′1 may be chosen by agent 1 in response to w1 under some technology.
When agent 1 chooses action a′1 in response, the principal’s resulting payoff in the first period is

EF′1

[
y − w1(y)

]
= λEF0

[
y − w1(y)

]
= λ (1 − s1)EF0

[
y
]

= (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under
(
w1

∣∣∣a′1) and under (ŵ1|a1) is exactly equal.

Moreover, the principal’s optimal second-period payoff guarantee is V∗2
(
a′1

)
= Φ

(
a′1

)2
with

Φ
(
a′1

)
= max

a∈A0∪{a′1}

{ √
EFa[y] −

√
ca

}
.

From EF′1

[
y
]

= EF1[y], it follows that Φ
(
a′1

)
= Φ (a1), which implies that V∗2

(
a′1

)
= V∗2 (a1). The principal’s

interim payoff guarantee is

U
(
w1

∣∣∣a′1) = EF′1

[
y − w1(y)

]
+ β · V∗2

(
a′1

)
= EF1

[
y − ŵ1(y)

]
+ β · V∗2 (a1) = U (ŵ1|a1) ,

as desired.

This completes the proof. �

Proof of Lemma 2. We first reformulate program (5) as an equivalent maximization problem with contin-
uous objective function and compact feasible region. Slightly abusing notation, we use U (s1) instead of
U (w1) to denote the infimum value of program (5). Note that both the objective and the constraints of pro-
gram (5) depend on the choice variables (F1, c1) only through the value of

(
EF1

[
y
]
, c1

)
. Rewrite EF1

[
y
]

= x
and c1 = z with x, z ≥ 0. Plugging into the original program (5), we obtain an equivalent program

U (s1) = inf
x,z

(1 − s1) x + β · φ (x, z)2

s.t. s1x − z ≥ max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}
, x, z ≥ 0,

(A.1)

where

φ (x, z) ≡ max
{
√

x −
√

z, max
a∈A0

{ √
EFa[y] −

√
ca

}}
. (A.2)

Let x ≡ maxa∈A0 EFa[y] > 0, and v ≡ maxa∈A0

{ √
EFa[y] −

√
ca

}
> 0. Suppose

(F0, c0) ∈ arg max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}
.

Note that (x0, z0) =
(
EF0

[
y
]
, c0

)
is feasible in program (A.1) and leads to objective value

(1 − s1) x0 + β · φ (x0, z0)2 ≤ (1 − s1) x + β · v2.

If x ≥ x, then

(1 − s1) x + β · φ (x, z)2 ≥ (1 − s1) x + β · v2.
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Therefore, restricting x ∈
[
0, x

]
will not change the infimum of program (A.1). Moreover,

s1x − z ≥ 0 ⇒ z ≤ s1x ≤ x,

so restricting (x, z) ∈
[
0, x

]2 will not change the infimum of program (A.1).
Consider the following program

Ψ∗ (s1) ≡ sup
x,z

Ψ (x, z; s1) ≡ −
(
(1 − s1) x + β · φ (x, z)2

)
s.t. (x, z) ∈ Γ(s1),

(A.3)

where Φ̂ is defined by equation (A.2), and Γ is defined as follows:

Γ(s1) ≡
{

(x, z) ∈
[
0, x

]2 : s1x − z ≥ max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}}
.

By definition, Ψ :
[
0, x

]2
× [0, 1] → R is a continuous function, and Γ : [0, 1] ⇒

[
0, x

]2 is a compact-
valued and nonempty-valued correspondence. Moreover, the infimum of program (A.1), U (s1), is given by
−Ψ∗ (s1).

Note that for each s1, Γ (s1) defines a half plane intersecting a square, and that the half plane shifts
linearly in s1. Thus, Γ is both upper and lower hemicontinuous. It then follows from Berge’s maximum
theorem that Ψ∗ is continuous, and

Γ∗ (s1) ≡
{
(x, z) ∈ Γ (s1) : Ψ (x, z; s1) = Ψ∗ (s1)

}
is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program (A.3)
exists for all s1, and the supremum can be replaced by maximum.

It follows that the infimum in program (A.1) and therefore the original program (5) can both be replaced
by minimum, and the resulting minimum value U (s1) = −Ψ∗ (s1) is continuous in s1. Hence, U (s1) achieves
a maximum over [0, 1]. This maximum is also the optimal guarantee over all linear contracts. �

Proof of Theorem 1. According to Lemma 2, among all linear first-period contracts, there exists an optimal
one, call it w∗1. If w1 is any other (nonlinear) first-period contract that outperforms w∗1, then by Lemma 1,
there is a linear contract that in turn does at least as well as w1. But this contradicts the fact that w∗1 is an
optimal linear contract. Therefore, w∗1 is optimal among all first-period contracts. �

A.2 Proofs for Section 4

A.2.1 Proofs for Subsection 4.2

If the principal offers w2 = w1, agent 2 will choose a1 again. This just repeats her first-period payoff

EF1

[
y − w1 (y)

]
in the second period.

To prove Lemma 3, we start by establishing three lemmas, Lemmas A.1, A.2, A.3, to prove that the
principal’s payoff guarantee in the second period from offering the remaining three contracts, (i) w2 (y) =

w1 (y) + m · (y − w1 (y)) with m defined by equation (7), (ii) w2 (y) = s2y with s2 =
√

c0/EF0

[
y
]
, and (iii)

w2 (y) = s2y with s2 =
√

c1/EF1

[
y
]
, is exactly as claimed in the statement of Lemma 3.

Lemma A.1. If
√
EF0

[
y − w1 (y)

]
−

√
g (w1, a1) attains the maximum in equation (6), and the principal

offers w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (7), then her payoff guarantee in the
second period is exactly

( √
EF0

[
y − w1 (y)

]
−

√
g (w1, a1)

)2
.
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Proof of Lemma A.1. Let g0 ≡ g (w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
.

If
√
EF0

[
y − w1 (y)

]
−
√

g0 attains the maximum in equation (6), then it holds that
√
EF0

[
y − w1 (y)

]
−

√
g0 ≥

√
EF0[y] −

√
c0 > 0, which implies that m ∈ [0, 1].

Suppose the principal offers w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (7). We first
show that this guarantees her at least

( √
EF0

[
y − w1 (y)

]
−
√

g0
)2
.

Let (F2, c2) be the action chosen by agent 2. By agent 1’s rationality, we have

EF1

[
w1 (y)

]
− c1 ≥ EF2

[
w1 (y)

]
− c2.

By agent 2’s rationality, we have

EF2

[
w2 (y)

]
− c2 ≥ EF0

[
w2 (y)

]
− c0.

Summing up the two inequalities, we obtain

m · EF2

[
y − w1 (y)

]
= EF2

[
w2 (y) − w1 (y)

]
≥

(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
= m · EF0

[
y − w1 (y)

]
− g0,

implying that
EF2

[
y − w1 (y)

]
≥ EF0

[
y − w1 (y)

]
− g0/m.

Therefore, the principal’s payoff in the second period is

EF2

[
y − w2 (y)

]
= EF2

[
y − w1 (y)

]
− m · EF2

[
y − w1 (y)

]
= (1 − m)EF2

[
y − w1 (y)

]
≥ (1 − m)

(
EF0

[
y − w1 (y)

]
− g0/m

)
=

(√
EF0

[
y − w1 (y)

]
−
√

g0

)2
,

as desired.
Next we show that her payoff guarantee from w2 (y) = w1 (y) + m · (y − w1 (y)) cannot be strictly higher

than
( √
EF0

[
y − w1 (y)

]
−
√

g0
)2

, since this is exactly her payoff when the technology is A = {a0, a1, (F′, c′)},
with F′ = (1 − m) F0 + m · δ0 and c′ = c0 −

(
m · EF0

[
w1 (y)

]
+ g0

)
.

The proof takes three steps.

Step 1
√
EF0

[
y − w1 (y)

]
−
√

g0 ≥
√
EF0[y] −

√
c0 implies c0 ≥ m · EF0

[
w1 (y)

]
+ g0, so c′ is indeed

nonnegative.
It suffices to show( √
EF0[y] −

√
EF0

[
y − w1 (y)

]
+
√

g0

)2
≥ m · EF0

[
w1 (y)

]
+ g0

⇔

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])2
≥ m · EF0

[
w1 (y)

]
− 2
√

g0 ·

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])
⇔

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])2
≥ m ·

(
EF0

[
w1 (y)

]
− 2

√
EF0

[
y − w1 (y)

]
·

( √
EF0[y] −

√
EF0

[
y − w1 (y)

]))
.

(A.4)
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Note that

EF0

[
w1 (y)

]
− 2

√
EF0

[
y − w1 (y)

]
·

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])
=EF0

[
w1 (y)

]
− 2

√
EF0

[
y − w1 (y)

]
·

EF0

[
w1 (y)

]√
EF0[y] +

√
EF0

[
y − w1 (y)

]
=

EF0

[
w1 (y)

]√
EF0[y] +

√
EF0

[
y − w1 (y)

] · ( √EF0[y] +

√
EF0

[
y − w1 (y)

]
− 2

√
EF0

[
y − w1 (y)

])
=

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])
·

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])
=

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])2
.

Therefore, inequality (A.4) is equivalent to( √
EF0[y] −

√
EF0

[
y − w1 (y)

])2
≥ m ·

( √
EF0[y] −

√
EF0

[
y − w1 (y)

])2
,

which is implied by the assumption that
√
EF0

[
y − w1 (y)

]
≥
√

g0 (or equivalently, m ≤ 1).

Step 2 A = {a0, a1, (F′, c′)} is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, c′) is

EF′
[
w1(y)

]
− c′ = (1 − m)EF0

[
w1(y)

]
− c0 +

(
m · EF0

[
w1 (y)

]
+ g0

)
=

(
EF0

[
w1 (y)

]
− c0

)
+ g0 = EF1

[
w1 (y)

]
− c1,

so he would choose a1 = (F1, c1) in response to w1.
Note that agent 1 is actually indifferent between (F1, c1) and (F′, c′), and we will show below that agent

2 is indifferent between (F0, c0) and (F′, c′). Technically to ensure that agent 1 chooses (F1, c1) and agent
2 chooses (F′, c′) we can set F′ = (1 − m + ε) F0 + (m − ε) δ0 and c′ = c0 −

(
m · EF0

[
w1 (y)

]
+ g0

)
+ ε ·

EF0

[
w1 (y) + (m/2) · (y − w1 (y))

]
then let ε ↓ 0. Many of the following cases of potential indifference shall

be treated similarly, and we omit them for brevity.

Step 3 If A = {a0, a1, (F′, c′)}, then agent 2 chooses (F′, c′) in response to w2, leading to a payoff of( √
EF0

[
y − w1 (y)

]
−
√

g0
)2

for the principal.
Agent 2’s payoff from (F′, c′) is

EF′
[
w2(y)

]
− c′ = (1 − m)EF0

[
w1 (y) + m · (y − w1 (y))

]
− c0 +

(
m · EF0

[
w1 (y)

]
+ g0

)
= EF0

[
w1 (y)

]
+ m · EF0

[
y − w1 (y)

]
− m2 · EF0

[
y − w1 (y)

]
− c0 + g0

= EF0

[
w2 (y)

]
− g0 − c0 + g0 = EF0

[
w2 (y)

]
− c0,
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and his payoff from a1 = (F1, c1) is

EF1

[
w2(y)

]
− c1 = EF1

[
w1(y) + m · (y − w1 (y))

]
− c1

= m · EF1

[
y − w1 (y)

]
+

(
EF0

[
w1(y)

]
− c0

)
+ g0

≤ m ·
(√
EF0

[
y − w1 (y)

]
−
√

g0

)2
+

(
EF0

[
w1(y)

]
− c0

)
+ g0

≤ m ·
√
EF0

[
y − w1 (y)

] (√
EF0

[
y − w1 (y)

]
−
√

g0

)
+

(
EF0

[
w1(y)

]
− c0

)
+ g0

= m · EF0

[
y − w1 (y)

]
− g0 +

(
EF0

[
w1(y)

]
− c0

)
+ g0 = EF0

[
w2 (y)

]
− c0,

so he would choose (F′, c′) in response to w2.
This leaves the principal with payoff of

EF′
[
y − w2 (y)

]
= EF′

[
y − w1 (y)

]
− m · EF′

[
y − w1 (y)

]
= (1 − m)EF′

[
y − w1 (y)

]
= (1 − m)2 EF0

[
y − w1 (y)

]
=

(√
EF0

[
y − w1 (y)

]
−
√

g0

)2
,

as desired.

This completes the proof. �

Lemma A.2. If
√
EF0[y] −

√
c0 attains the maximum in equation (6), and the principal offers the linear

contract w2 (y) = s2y with s2 =
√

c0/EF0

[
y
]
, then her payoff guarantee in the second period is exactly( √

EF0[y] −
√

c0
)2

.

Proof of Lemma A.2. Suppose that
√
EF0[y] −

√
c0 attains the maximum in equation (6), and the principal

offers the linear contract w2 (y) = s2y with s2 =
√

c0/EF0

[
y
]
. We first show that this guarantees her at least( √

EF0[y] −
√

c0
)2

.
Let (F2, c2) be the action chosen by agent 2. By agent 2’s rationality, we have

EF2

[
w2 (y)

]
− c2 ≥ EF0

[
w2 (y)

]
− c0,

which further implies that

s2EF2

[
y
]

= EF2

[
w2 (y)

]
≥ EF2

[
w2 (y)

]
− c2 ≥ EF0

[
w2 (y)

]
− c0 = s2EF0

[
y
]
− c0,

and hence
EF2

[
y
]
≥ EF0

[
y
]
− c0/s2.

Therefore, the principal’s payoff in the second period is

EF2

[
y − w2 (y)

]
= EF2

[
(1 − s2) y

]
≥ (1 − s2)

(
EF0

[
y
]
− c0/s2

)
=

( √
EF0[y] −

√
c0

)2
,

as desired.
Next we show that her payoff guarantee from this linear contract cannot be strictly higher, since( √
EF0[y] −

√
c0

)2
is exactly her payoff when the technology is A = {a0, a1, (F′, 0)}, with F′ = λF0+(1−λ)δ0

where λ = 1 −
√

c0/EF0

[
y
]
∈ [0, 1].

The proof takes two steps. Let g0 ≡ g (w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
.
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Step 1 A = {a0, a1, (F′, 0)} is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, 0) is EF′

[
w1(y)

]
= λEF0

[
w1(y)

]
=

(
1 −

√
c0/EF0

[
y
])
EF0

[
w1(y)

]
, and we

have(
1 −

√
c0

EF0

[
y
] )EF0

[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1 ⇔

(
1 −

√
c0

EF0

[
y
] )EF0

[
w1(y)

]
≤

(
EF0

[
w1 (y)

]
− c0

)
+ g0

⇔

√
c0

EF0

[
y
]EF0

[
w1(y)

]
− c0 + g0 ≥ 0.

From √
EF0[y] −

√
c0 ≥

√
EF0

[
y − w1 (y)

]
−
√

g0,

we obtain
EF0

[
w1 (y)

]
≥ EF0

[
y
]
−

( √
EF0[y] −

√
c0 +

√
g0

)2
,

and thus√
c0

EF0

[
y
]EF0

[
w1(y)

]
− c0 + g0 ≥

√
c0

EF0

[
y
] · (EF0

[
y
]
−

( √
EF0[y] −

√
c0 +

√
g0

)2
)
− c0 + g0

=

(
1 −

√
c0

EF0

[
y
] ) (√c0 −

√
g0

)2
≥ 0,

as desired. So we indeed have EF′
[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1, implying that agent 1 would choose a1 =

(F1, c1) in response to w1.

Step 2 If A = {a0, a1, (F′, 0)}, then agent 2 chooses (F′, 0) in response to w2, leading to a payoff of( √
EF0[y] −

√
c0

)2
for the principal.

Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF0

[
s2y

]
=

(
1 −

√
c0

EF0

[
y
] ) · √ c0

EF0

[
y
] · EF0

[
y
]

=
( √
EF0[y] −

√
c0

) √
c0 =

√
c0

EF0

[
y
] · EF0

[
y
]
− c0

= s2EF0

[
y
]
− c0 = EF0

[
w2 (y)

]
− c0.

His payoff from a1 = (F1, c1) is EF1

[
w2(y)

]
− c1 =

√
c0/EF0

[
y
]
· EF1

[
y
]
− c1, and we have√

c0

EF0

[
y
] · EF1

[
y
]
− c1 ≤ EF0

[
w2(y)

]
− c0 ⇔

√
c0

EF0

[
y
] · EF1

[
y
]
− c1 ≤

( √
EF0[y] −

√
c0

) √
c0.

From
√
EF0[y] −

√
c0 ≥

√
EF1[y] −

√
c1, we obtain EF1

[
y
]
≤

( √
EF0[y] −

√
c0 +

√
c1

)2
, and thus

( √
EF0[y] −

√
c0

) √
c0 −

(√
c0

EF0

[
y
] · EF1

[
y
]
− c1

)
≥

( √
EF0[y] −

√
c0

) √
c0 −

(√
c0

EF0

[
y
] · ( √EF0[y] −

√
c0 +

√
c1

)2
− c1

)
=

(
1 −

√
c0

EF0

[
y
] ) (√c0 −

√
c1

)2
≥ 0,
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as desired. So we indeed have EF1

[
w2(y)

]
− c1 ≤ EF0

[
w2 (y)

]
− c0 = EF′

[
w2(y)

]
, implying that agent 2

would choose (F′, 0) in response to w2.
This leaves the principal with payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
(1 − s2) y

]
=

(
1 −

√
c0

EF0

[
y
] ) (1 − √

c0

EF0

[
y
] ) · EF0

[
y
]

=
( √
EF0[y] −

√
c0

)2
,

as desired.

This completes the proof. �

Lemma A.3. If
√
EF1[y] −

√
c1 attains the maximum in equation (6), and the principal offers the linear

contract w2 (y) = s2y with s2 =
√

c1/EF1

[
y
]
, then her payoff guarantee in the second period is exactly( √

EF1[y] −
√

c1
)2

.

Proof of Lemma A.3. If
√
EF1[y] −

√
c1 attains the maximum in equation (6), then it holds that

√
EF1[y] −

√
c1 ≥

√
EF0[y] −

√
c0 > 0, which implies that c1/EF1[y] ∈ [0, 1].

Suppose the principal offers the linear contract w2 (y) = s2y with s2 =
√

c1/EF1

[
y
]
. We first show that

this guarantees her at least
( √
EF1[y] −

√
c1

)2
. Let (F2, c2) be the action chosen by agent 2. By agent 2’s

rationality, we have
EF2

[
w2 (y)

]
− c2 ≥ EF1

[
w2 (y)

]
− c1,

which further implies that

s2EF2

[
y
]

= EF2

[
w2 (y)

]
≥ EF2

[
w2 (y)

]
− c2 ≥ EF1

[
w2 (y)

]
− c1 = s2EF1

[
y
]
− c1,

and hence
EF2

[
y
]
≥ EF1

[
y
]
− c1/s2.

Therefore, the principal’s payoff in the second period is

EF2

[
y − w2 (y)

]
= EF2

[
(1 − s2) y

]
≥ (1 − s2)

(
EF1

[
y
]
− c1/s2

)
=

( √
EF1[y] −

√
c1

)2
,

as desired.
Next we show that her payoff guarantee from this linear contract cannot be strictly higher, since this

is exactly her payoff when the technology is A = {a0, a1, (F′, 0)}, with F′ = λF1 + (1 − λ)δ0 where λ =

1 −
√

c1/EF1

[
y
]
∈ [0, 1].

The proof takes two steps.

Step 1 A = {a0, a1, (F′, 0)} is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, 0) is EF′

[
w1(y)

]
= λEF1

[
w1(y)

]
=

(
1 −

√
c1/EF1

[
y
])
EF1

[
w1(y)

]
, and we

have(
1 −

√
c1

EF1

[
y
] )EF1

[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1 ⇔

(
1 −

√
c1

EF1

[
y
] )EF1

[
w1(y)

]
≤ EF1

[
w1 (y)

]
− c1

⇔

√
c1

EF1

[
y
]EF1

[
w1(y)

]
− c1 ≥ 0.

32



From
√
EF1[y] −

√
c1 ≥

√
EF1

[
y − w1 (y)

]
, we obtain EF1

[
w1 (y)

]
≥ EF1

[
y
]
−

( √
EF1[y] −

√
c1

)2
, and thus√

c1

EF1

[
y
]EF1

[
w1(y)

]
− c1 ≥

√
c1

EF1

[
y
] · (EF1

[
y
]
−

( √
EF1[y] −

√
c1

)2
)
− c1 =

(
1 −

√
c1

EF1

[
y
] ) c1 ≥ 0,

as desired. So we indeed have EF′
[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1, implying that agent 1 would choose (F1, c1)

in response to w1.

Step 2 If A = {a0, a1, (F′, 0)}, then agent 2 chooses (F′, 0) in response to w2, leading to a payoff of( √
EF1[y] −

√
c1

)2
for the principal.

Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF1

[
s2y

]
=

(
1 −

√
c1

EF1

[
y
] ) · √ c1

EF1

[
y
] · EF1

[
y
]

=
( √
EF1[y] −

√
c1

) √
c1 =

√
c1

EF1

[
y
] · EF1

[
y
]
− c1

= s2EF1

[
y
]
− c1 = EF1

[
w2 (y)

]
− c1.

His payoff from (F0, c0) is EF0

[
w2(y)

]
− c0 =

√
c1/EF1

[
y
]
· EF0

[
y
]
− c0, and we have√

c1

EF1

[
y
] · EF0

[
y
]
− c0 ≤ EF1

[
w2(y)

]
− c1 ⇔

√
c1

EF1

[
y
] · EF0

[
y
]
− c0 ≤

( √
EF1[y] −

√
c1

) √
c1.

From
√
EF1[y] −

√
c1 ≥

√
EF0[y] −

√
c0, we obtain EF0

[
y
]
≤

( √
EF1[y] −

√
c1 +

√
c0

)2
, and thus

( √
EF1[y] −

√
c1

) √
c1 −

(√
c1

EF1

[
y
] · EF0

[
y
]
− c0

)
≥

( √
EF1[y] −

√
c1

) √
c1 −

(√
c1

EF1

[
y
] · ( √EF1[y] −

√
c1 +

√
c0

)2
− c0

)
=

(
1 −

√
c1

EF1

[
y
] ) (√c1 −

√
c0

)2
≥ 0,

as desired. So we indeed have EF0

[
w2(y)

]
− c0 ≤ EF1

[
w2 (y)

]
− c1 = EF′

[
w2(y)

]
, implying that agent 2

would choose (F′, 0) in response to w2.
This leaves the principal with payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
(1 − s2) y

]
=

(
1 −

√
c1

EF1

[
y
] ) (1 − √

c1

EF1

[
y
] ) · EF1

[
y
]

=
( √
EF1[y] −

√
c1

)2
,

as desired.

This completes the proof. �

We are now ready to prove Lemma 3.

Proof of Lemma 3. If the principal offers w2 = w1, this guarantees her payoff in the first-period, which is
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equal to EF1

[
y − w1 (y)

]
. Note that her payoff guarantee from w2 = w1 cannot be strictly higher, since this

is exactly her payoff when the technology is A = {a0, a1}, which is compatible with (w1, a1).
Together with Lemmas A.1, A.2 and A.3, we have shown that by offering the best among the four

contracts: (i) w2 = w1, (ii) w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (7), (iii) w2 (y) = s2y
with s2 =

√
c0/EF0

[
y
]
, and (iv) w2 (y) = s2y with s2 =

√
c1/EF1

[
y
]
, the principal’s payoff guarantee in the

second period is exactly given by Φ̂ (w1, a1)2, where Φ̂ is defined by equation (6). The principal’s optimal
second-period payoff guarantee, V̂∗2 (w1, a1), is thus at least Φ̂ (w1, a1)2.

Now consider an arbitrary second-period contract w2. It suffices to show that the principal’s payoff

guarantee is not strictly higher than Φ̂ (w1, a1)2 under w2.
Consider the following two cases.

Case 1. EF1

[
w2 (y)

]
− c1 ≥ EF0

[
w2 (y)

]
− c0.

1. If EF1

[
w2 (y)

]
≥ EF1

[
w1 (y)

]
, consider the second-period contract w2 when the technology is A =

{a0, a1}, which is compatible with (w1, a1). Agent 2 would prefer to take action a1 = (F1, c1). This
leaves the principal with a payoff of

EF1

[
y − w2 (y)

]
≤ EF1

[
y − w1 (y)

]
≤ Φ̂ (w1, a1)2 ,

as desired.

2. If EF1

[
w2 (y)

]
< c1, consider the second-period contract w2 when A = {a0, a1, (δ0, 0)}, which is

compatible with (w1, a1). Agent 2’s payoff from (δ0, 0) is

w2 (0) ≥ 0 > EF1

[
w2(y)

]
− c1,

so he would prefer to take action (δ0, 0). This leaves the principal with a payoff of

−w2 (0) ≤ 0 ≤ Φ̂ (w1, a1)2 ,

as desired.

3. If c1 ≤ EF1

[
w2 (y)

]
< EF1

[
w1 (y)

]
, let λ = 1 − c1/EF1

[
w2 (y)

]
∈ [0, 1] and let F′ be the mixture

λF1 + (1 − λ)δ0. Consider the technology A = {a0, a1, (F′, 0)}.

We proceed with two steps.

Step 1 A is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.

Agent 1’s payoff from (F′, 0) is

EF′
[
w1(y)

]
= λEF1

[
w1(y)

]
= EF1

[
w1 (y)

]
−
EF1

[
w1(y)

]
EF1

[
w2(y)

]c1 < EF1

[
w1 (y)

]
− c1,

so he would prefer to take action a1 = (F1, c1) when A = {a0, a1, (F′, 0)}.

Step 2 Agent 2 chooses (F′, 0) in response to w2, resulting in the principal’s payoff no more than( √
EF1[y] −

√
c1

)2
.
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Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF1

[
w2(y)

]
+ (1 − λ)w2(0)

≥ λEF1

[
w2(y)

]
= EF1

[
w2(y)

]
− c1,

which is also larger than EF0

[
w2 (y)

]
− c0 by assumption. So he would prefer to take action (F′, 0).

This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= λEF1

[
y − w2 (y)

]
+ (1 − λ) (0 − w2 (0))

≤ λEF1

[
y − w2 (y)

]
=

(
1 −

c1

EF1

[
w2 (y)

] ) (EF1

[
y
]
− EF1

[
w2 (y)

])
≤

( √
EF1[y] −

√
c1

)2
, (A.5)

which is no more than Φ̂ (w1, a1)2, as desired. The last inequality (A.5),(
1 −

c1

EF1

[
w2 (y)

] ) (EF1

[
y
]
− EF1

[
w2 (y)

])
≤

( √
EF1[y] −

√
c1

)2

⇔

√EF1

[
w2 (y)

]
−

√
c1EF1

[
y
]

EF1

[
w2 (y)

]
2

≥ 0,

which always holds.

Case 2. EF1

[
w2 (y)

]
− c1 < EF0

[
w2 (y)

]
− c0.

1. If EF0

[
w2 (y)

]
< c0, consider the second-period contract w2 when A = {a0, a1, (δ0, 0)}, which is

compatible with (w1, a1). Agent 2’s payoff from (δ0, 0) is

w2 (0) ≥ 0 > EF0

[
w2(y)

]
− c0,

so he would prefer to take action (δ0, 0). This leaves the principal with a payoff of

−w2 (0) ≤ 0 ≤ Φ̂ (w1, a1)2 ,

as desired.

2. If EF0

[
w2 (y)

]
≥ c0, and it holds that

either (i) EF0

[
w1(y)

]
≤ EF1

[
w1 (y)

]
− c1,

or (ii) EF0

[
w2 (y)

]
<

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0,
(A.6)

let λ = 1− c0/EF0

[
w2 (y)

]
∈ [0, 1] and let F′ be the mixture λF0 + (1− λ)δ0. Consider the technology

A = {a0, a1, (F′, 0)}.

We proceed with two steps.

Step 1 A is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
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Agent 1’s payoff from (F′, 0) is

EF′
[
w1(y)

]
= λEF0

[
w1(y)

]
= EF0

[
w1 (y)

]
−
EF0

[
w1(y)

]
EF0

[
w2(y)

]c0

< EF1

[
w1 (y)

]
− c1. (A.7)

Note that inequality (A.7) holds exactly due to the assumptions in (A.6). So agent 1 would prefer to
take action a1 = (F1, c1) when A = {a0, a1, (F′, 0)}.

Step 2 Agent 2 chooses (F′, 0) in response to w2, resulting in the principal’s payoff no more than( √
EF0[y] −

√
c0

)2
.

Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF0

[
w2(y)

]
+ (1 − λ)w2(0)

≥ λEF0

[
w2(y)

]
= EF0

[
w2(y)

]
− c0,

which is also larger than EF1

[
w2 (y)

]
− c1 by assumption. So he would prefer to take action (F′, 0)

when A = {a0, a1, (F′, 0)}.

This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
y − w2 (y)

]
+ (1 − λ) (0 − w2 (0))

≤ λEF0

[
y − w2 (y)

]
=

(
1 −

c0

EF0

[
w2 (y)

] ) (EF0

[
y
]
− EF0

[
w2 (y)

])
≤

( √
EF0[y] −

√
c0

)2
, (A.8)

which is no more than Φ̂ (w1, a1)2, as desired. The last inequality (A.8) holds for the same reason as
(A.5).

3. If both inequalities in (A.6) are reversed, i.e.,

EF0

[
w1(y)

]
> EF1

[
w1 (y)

]
− c1 and EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0,

let

λ =

(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ,

c′ =
EF0

[
w1 (y)

] (
EF0

[
w2 (y)

]
− c0

)
− EF0

[
w2 (y)

] (
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ,

and let F′ be the mixture λF0 + (1 − λ)δ0. Consider the technology A = {a0, a1, (F′, c′)}.

We proceed with three steps.

Step 1 λ ∈ [0, 1] and c′ ≥ 0, so (F′, c′) is a valid action.

36



Note that

EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0 ≥
EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF0

[
w1 (y)

]
− c0

)c0 = EF0

[
w1(y)

]
,

so the denominator of λ and c′ is positive.

Moreover,

EF0

[
w2 (y)

]
− c0 ≥

EF1

[
w1 (y)

]
− c1

EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0

≥
EF1

[
w1 (y)

]
− c1

EF0

[
w1(y)

]
−

(
EF0

[
w1 (y)

]
− c0

)c0 = EF1

[
w1 (y)

]
− c1,

so the numerator of λ is positive.

The numerator of c′ is positive because

EF0

[
w1 (y)

] (
EF0

[
w2 (y)

]
− c0

)
≥ EF0

[
w2 (y)

] (
EF1

[
w1 (y)

]
− c1

)
⇔ EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0.

Finally, (
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
≤ EF0

[
w2 (y)

]
− EF0

[
w1 (y)

]
⇔ EF0

[
w1 (y)

]
− c0 ≤ EF1

[
w1 (y)

]
− c1,

so λ is indeed smaller than 1.

Step 2 A is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.

Agent 1’s payoff from (F′, c′) is

EF′
[
w1(y)

]
− c′ = λEF0

[
w1(y)

]
− c′ = EF1

[
w1 (y)

]
− c1,

so he would prefer to take action a1 = (F1, c1) when A = {a0, a1, (F′, c′)}.

Step 3 Agent 2 chooses (F′, c′) in response to w2, resulting in the principal’s payoff no more than( √
EF0

[
y − w1 (y)

]
−

√
g (w1, a1)

)2
.

Agent 2’s payoff from (F′, c′) is

EF′
[
w2(y)

]
− c′ = λEF0

[
w2(y)

]
+ (1 − λ)w2(0) − c′

≥ λEF0

[
w2(y)

]
− c′ = EF0

[
w2(y)

]
− c0,

which is also larger than EF1

[
w2 (y)

]
− c1 by assumption. So he would prefer to take action (F′, c′)

when A = {a0, a1, (F′, c′)}.
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This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
y − w2 (y)

]
+ (1 − λ) (0 − w2 (0))

≤ λEF0

[
y − w2 (y)

]
=

(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] (
EF0

[
y
]
− EF0

[
w2 (y)

])
≤

(√
EF0

[
y − w1 (y)

]
−

√
g (w1, a1)

)2
, (A.9)

which is no more than Φ̂ (w1, a1)2, as desired. The last inequality (A.9),(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] (
EF0

[
y
]
− EF0

[
w2 (y)

])
≤

(√
EF0

[
y − w1 (y)

]
−

√
g (w1, a1)

)2

⇔

(
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

]
−

√
EF0

[
y − w1 (y)

]
·
√

g (w1, a1)
)2

EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ≥ 0,

which always holds. (Recall that g (w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
≥ 0.)

Summing up the above cases, we prove that the principal’s payoff guarantee is not strictly higher than
Φ̂ (w1, a1)2 under any second-period contract w2.

This completes the proof. �

A.3 Proofs for Section 4.3

To prove Theorem 2, we start by establishing two lemmas, Lemmas A.4 and A.5. Lemma A.4 shows that
any nonlinear contract is outperformed by some linear one, and Lemma A.5 further shows that the maximum
of the principal’s first-period problem exists within the class of linear first-period contracts.

Lemma A.4. In the case of constant technology, the linear contract ŵ1 defined by equation (3) satisfies
Û (ŵ1) ≥ Û (w1).

Proof of Lemma A.4. Consider an arbitrary action a1 = (F1, c1) agent 1 would take under contract ŵ1. We
need to show that the principal’s interim payoff guarantee, Û (ŵ1|a1), is at least Û (w1). The incentive gap is

g (ŵ1, a1) =
(
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF0

[
ŵ1 (y)

]
− c0

)
≥ 0,

and Lemma 3 shows that the principal’s optimal second-period payoff guarantee is V̂∗2 (ŵ1, a1) = Φ̂ (ŵ1, a1)2,
where

Φ̂ (ŵ1, a1) = max
{√
EF1

[
y − ŵ1(y)

]
,

√
EF0

[
y − ŵ1(y)

]
−

√
g (ŵ1, a1),

√
EF0[y] −

√
c0,

√
EF1[y] −

√
c1

}
,

(with
√

x = −∞ for x < 0 by convention).
(A.10)

The principal’s interim payoff guarantee is

Û (ŵ1|a1) = EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) .

It suffices to construct another action a′1, which may be taken by agent 1 under w1 and some other
technology, such that Û

(
w1

∣∣∣a′1) ≤ Û (ŵ1|a1). Note that an action may be taken by agent 1 if and only if the

incentive gap is nonnegative, i.e., g
(
w1, a′1

)
≥ 0.

38



Case 1. EF1

[
y
]
≥ EF0

[
y
]
.

Consider a′1 = a0. The corresponding incentive gap is g (w1, a0) = 0. When agent 1 takes action a0 in
response, the principal’s resulting payoff in the first period is

EF0

[
y − w1(y)

]
= (1 − s1)EF0

[
y
]
≤ (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under (w1|a0) is weakly lower than under (ŵ1|a1).
Moreover, it follows from Lemma 3 that the principal’s optimal second-period payoff guarantee is

V̂∗2 (w1, a0) = Φ̂ (w1, a0)2, where

Φ̂ (w1, a0) = max
{√
EF0

[
y − w1(y)

]
,
√
EF0[y] −

√
c0

}
.

Note that we have shown EF0

[
y − w1(y)

]
≤ EF1

[
y − ŵ1(y)

]
, so Φ̂ (w1, a0) is also weakly smaller than

Φ̂ (ŵ1, a1) (given by equation (A.10)). This implies that V̂∗2 (w1, a0) ≤ V̂∗2 (ŵ1, a1).
Therefore, the principal’s interim payoff guarantee is

Û (w1|a0) = EF0

[
y − w1(y)

]
+ β · V̂∗2 (w1, a0)

≤ EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) = Û (ŵ1|a1) ,

as desired.

Case 2. EF1

[
y
]
< EF0

[
y
]
.

Let λ = EF1[y]/EF0[y] ∈ [0, 1] and let F′1 be the mixture λF0 + (1 − λ) δ0. Note that EF′1

[
y
]

= EF1[y].

Consider a′1 =
(
F′1, c1

)
. The corresponding incentive gap is

g
(
w1, a′1

)
=

(
EF′1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
.

Note that

EF′1

[
w1 (y)

]
− c1 = λEF0

[
w1 (y)

]
− c1 = λs1EF0

[
y
]
− c1 = s1EF1

[
y
]
− c1 = EF1

[
ŵ1 (y)

]
− c1,

and
EF0

[
w1 (y)

]
− c0 = s1EF0

[
y
]
− c0 = EF0

[
ŵ1 (y)

]
− c0.

Thus,

g
(
w1, a′1

)
=

(
EF′1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
=

(
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF0

[
ŵ1 (y)

]
− c0

)
= g (ŵ1, a1) ≥ 0.

When agent 1 takes action a′1 in response, the principal’s resulting payoff in the first period is

EF′1

[
y − w1(y)

]
= λEF0

[
y − w1(y)

]
= λ (1 − s1)EF0

[
y
]

= (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under
(
w1

∣∣∣a′1) and under (ŵ1|a1) are exactly equal.
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Moreover, the quadruple in equation (6) with respect to
(
w1, a′1

)
,{√

EF′1

[
y − w1(y)

]
,
√
EF0

[
y − w1(y)

]
−

√
g
(
w1, a′1

)
,
√
EF0[y] −

√
c0,

√
EF′1[y] −

√
c1

}
,

takes the same value as the quadruple in equation (6) with respect to (ŵ1, a1),{√
EF1

[
y − ŵ1(y)

]
,
√
EF0

[
y − ŵ1(y)

]
−

√
g (ŵ1, a1),

√
EF0[y] −

√
c0,

√
EF1[y] −

√
c1

}
.

It follows from Lemma 3 that the principal’s optimal second-period payoff guarantee also takes the same
value: V̂∗2

(
w1, a′1

)
= V̂∗2 (ŵ1, a1).

Therefore, the principal’s interim payoff guarantee is

Û
(
w1

∣∣∣a′1) = EF′1

[
y − w1(y)

]
+ β · V̂∗2

(
w1, a′1

)
= EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) = Û (ŵ1|a1) ,

as desired.

This completes the proof. �

Lemma A.5. In the case of constant technology, within the class of linear first-period contracts, there exists
an optimal one for the principal.

Proof of Lemma A.5. Assume the principal offers a linear first-period contract w1 (y) = s1y with s1 ∈ [0, 1].
If agent 1’s payoff from taking a0 is strictly negative, i.e., EF0

[
w1 (y)

]
− c0 = s1EF0[y] − c0 < 0, then

the principal cannot guarantee any positive payoff in the first period, since it is possible that the action
(δ0, 0) ∈ A, and the agent would strictly prefer this action to a0. Moreover, according to Lemma 3, the
principal’s optimal second-period payoff guarantee is V̂∗2 (w1, (δ0, 0)) =

( √
EF0[y] −

√
c0

)2
. This is already

strictly worse than offering the alternative contract s′1y with s′1 =
√

c0/EF0

[
y
]

instead, because doing so

guarantees a strictly positive payoff
( √
EF0[y] −

√
c0

)2
in the first period, and the payoff guarantee in the

second period can only get better.
Therefore, when searching for optimal linear contracts, we may concentrate on those with s1 ≥ c0/EF0[y].

For any such linear first-period contract, suppose that agent 1 chooses a1 = (F1, c1) in response. As is shown
in Lemma 3, the principal’s optimal second-period payoff guarantee is Φ̂ (w1, a1)2, with Φ̂ defined by equa-
tion (6). Thus, her interim payoff guarantee is

Û (w1|a1) = EF1

[
y − w1(y)

]
+ β · Φ̂ (w1, a1)2 = (1 − s1)EF1

[
y
]
+ β · Φ̂ (w1, a1)2 .

The worst-case overall payoff guarantee minimizes the above expression over all a1 that agent 1 may choose
under some technology. Note that agent 1 prefers action a1 over the known action a0 if and only if the
incentive gap is nonnegative, i.e., g (w1, a1) ≥ 0, which is equivalent to(

EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
=

(
s1EF1[y] − c1

)
−

(
s1EF0[y] − c0

)
≥ 0.

Hence, the following program yields a lower bound on the principal’s overall payoff guarantee

inf
F1,c1

(1 − s1)EF1

[
y
]
+ β · Φ̂ (w1, (F1, c1))2

s.t.
(
s1EF1[y] − c1

)
−

(
s1EF0[y] − c0

)
≥ 0,

(A.11)
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because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by
program (A.11).

Conversely, if s1 ≥ c0/EF0[y], then for any feasible a1 = (F1, c1) in program (A.11), agent 1 would
take action a1 in response to w1 whenever the technology A is compatible with (w1, a1). The worst case
over all such technologies leaves the principal with exactly her interim payoff guarantee, Û (w1|a1) =

(1 − s1)EF1

[
y
]

+ β · Φ̂ (w1, a1)2. Thus, if a solution to program (A.11) exists, then the principal’s payoff

guarantee cannot be strictly higher than its minimum value.
The above analysis shows that, for s1 ≥ c0/EF0[y], the worst-case overall payoff guarantee of any linear

first-period contract w1 (y) = s1y is exactly characterized by program (A.11).
Suppose s1 ≥ c0/EF0[y]. We now reformulate program (A.11) as an equivalent maximization problem

with continuous objective function and compact feasible region. Slightly abusing notation, we use Û (s1)
instead of Û (w1) to denote the infimum value of program (A.11).

Plug w1 (y) = s1y into equation (6) and let s0 ≡
√

c0/EF0[y]. We may rewrite Φ̂ (w1, a1) as

Φ̂ (w1, a1) = max
{√

(1 − s1)EF1

[
y
]
,
√

(1 − s1)EF0

[
y
]
−

√
g (w1, a1), (1 − s0)

√
EF0[y],

√
EF1[y] −

√
c1

}
.

Similarly,
g (w1, a1) =

(
s1EF1[y] − c1

)
−

(
s1 − s2

0

)
EF0[y] ≥ 0.

Note that both the objective and the constraints of program (A.11) depend on the choice variables
(F1, c1) only through the value of

(
EF1

[
y
]
, c1

)
. Rewrite EF1

[
y
]

= xEF0

[
y
]
, c1 = zEF0

[
y
]
, and let g (w1, a1) =

hEF0

[
y
]

with x, z, h ≥ 0. Plugging into the original program (A.11) and cancelling out EF0

[
y
]

from both
sides of the constraints, we obtain an equivalent program

Û (s1) = inf
x,z,h

(
(1 − s1) x + β · φ̂ (x, z, h; s1)2

)
EF0

[
y
]

s.t. h = s1x − z −
(
s1 − s2

0

)
≥ 0, x, z ≥ 0,

(A.12)

where

φ̂ (x, z, h; s1) ≡ max
{ √

(1 − s1) x,
√

1 − s1 −
√

h, 1 − s0,
√

x −
√

z
}
. (A.13)

Note that (x, z, h) =
(
1, s2

0, 0
)

is feasible in program (A.12) and leads to objective value(
(1 − s1) + β ·max

{ √
1 − s1, 1 − s0

}2)
EF0

[
y
]
.

If x ≥ 1 + β, then

(1 − s1) x + β · φ̂ (x, z, h; s1)2 ≥ (1 − s1) (1 + β) + β (1 − s0)2

= (1 − s1) + β (1 − s1) + β (1 − s0)2

≥ (1 − s1) + β ·max
{ √

1 − s1, 1 − s0
}2
.

Therefore, restricting x ∈
[
0, 1 + β

]
will not change the infimum of program (A.12). Moreover,

max {z, h} ≤ z + h = s1x −
(
s1 − s2

0

)
≤ s1x ≤ x,

so restricting (x, z, h) ∈
[
0, 1 + β

]3 will not change the infimum of program (A.12).

41



Consider the following program

Ψ̂∗ (s1) ≡ sup
x,z,h

Ψ̂ (x, z, h; s1) ≡ −
(
(1 − s1) x + β · φ̂ (x, z, h; s1)2

)
s.t. (x, z, h) ∈ Γ̂(s1),

(A.14)

where φ̂ is defined by equation (A.13), and Γ̂ is defined as follows:

Γ̂(s1) ≡
{
(x, z, h) ∈

[
0, 1 + β

]3 : h = s1x − z −
(
s1 − s2

0

)}
.

By definition, Ψ̂ :
[
0, 1 + β

]3
×

[
s2

0, 1
]
→ R is a continuous function, and Γ̂ :

[
s2

0, 1
]
⇒

[
0, 1 + β

]3 is a
compact-valued and nonempty-valued correspondence. Moreover, the infimum of program (A.12), Û (s1),
is given by

(
−Ψ̂∗ (s1)

)
· EF0

[
y
]
.

Note that for each s1, Γ̂ (s1) defines a plane intersecting a cube, and that the plane shifts linearly in s1.
Thus, Γ̂ is both upper and lower hemicontinuous. It then follows from Berge’s maximum theorem that Ψ̂∗ is
continuous, and

Γ̂∗ (s1) ≡
{
(x, z, h) ∈ Γ̂ (s1) : Ψ̂ (x, z, h; s1) = Ψ̂∗ (s1)

}
is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program
(A.14) exists for all s1, and the supremum can be replaced by maximum.

It follows that the infimum in program (A.12) and therefore the original program (A.11) can both be
replaced by minimum, and the resulting minimum value Û (s1) =

(
−Ψ̂∗ (s1)

)
· EF0

[
y
]

is continuous in s1.

Hence, Û (s1) achieves a maximum over
[
s2

0, 1
]
. This maximum is also the optimal guarantee over all linear

contracts. �

Proof of Theorem 2. According to Lemma A.5, among all linear first-period contracts, there exists an opti-
mal one, call it w∗1. If w1 is any other (nonlinear) first-period contract that outperforms w∗1, then by Lemma
A.4, there is a linear contract that in turn does at least as well as w1. But this contradicts the fact that w∗1 is
an optimal linear contract. Therefore, w∗1 is optimal among all first-period contracts. �
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Appendix B Constant Technology: General Set of Known Actions

In this appendix, we analyze the situation where the principal knows a set of actions A0 available to the agents
in the case of constant technology. The first main result is Lemma 3′, which characterizes the principal’s
optimal second-period payoff guarantee V̂∗2 (w1, a1) in closed form and identifies the contract that attains it
in various cases, analogous to Lemma 3 in the main text. Furthermore, we identify a sufficient condition on
the set of known actions, lower bound on marginal cost (Definition B.1), which ensures that linear contracts
still outperform nonlinear ones. This leads to the second main result, Theorem 2′, which generalizes the
optimality of linear contracts to richer environments.

In the first period, the principal believes that the true technology A could be any technology such that
A ⊇ A0. After the principal offers contract w1 and observes the action a1 chosen by agent 1, we adapt the
rule of updating, compatibility, as follows:

Definition 1′ (Compatible). Given w1 and a1 = (F1, c1), a technology A is compatible with (w1, a1) if

1. A ⊇ A0 ∪ {a1}.

2. EF
[
w1 (y)

]
− c ≤ EF1

[
w1 (y)

]
− c1 for all (F, c) ∈ A.

B.1 Second Period Analysis

We first consider the second period of the dynamic relationship, where the principal has offered some first-
period contract w1 and observed agent 1’s chosen action a1 = (F1, c1). She learns that the true technology A
is compatible with (w1, a1): it contains A0 and a1, and does not contain any action strictly better than a1 for
agent 1 under w1.

Again, if the principal offers the same contract w2 = w1, agent 2 will choose a1 since the two agents
have the same technology. This exactly repeats the first-period payoff EF1

[
y − w1 (y)

]
in the second pe-

riod. Moreover, if some initially known action (F0, c0) ∈ A0 leads to a higher payoff for the principal,
i.e., EF0

[
y − w1 (y)

]
> EF1

[
y − w1 (y)

]
, it might be tempting for the principal to try to obtain the payoff

EF0

[
y − w1 (y)

]
instead. However, we have already seen that achieving this payoff would violate agent 2’s

incentive constraint, and agent 2 needs to be compensated for not choosing a1. The amount of compensation
increases with the incentive gap, which may now vary for different actions.

Definition 2′ (Incentive gap). Given w1 and a1 = (F1, c1), the incentive gap with respect to an action a,
g (a|w1, a1), denotes the difference in agent 1’s payoff between choosing a1 and a. Formally,

g (a|w1, a1) ≡
(
EF1

[
w1 (y)

]
− c1

)
−

(
EFa

[
w1 (y)

]
− ca

)
.

Analogous to Lemma 3, part 1 of Lemma 3′ shows that if EF0

[
y − w1(y)

]
> g (a0|w1, a1), the principal

can offer a modified version of w1 with compensation in order to guarantee that her payoff in the second
period is at least

( √
EF0

[
y − w1 (y)

]
−

√
g (a0|w1, a1)

)2
. Let

Θ (w1, a1) ≡ max
a∈A0∪{a1}

{√
EFa

[
y − w1 (y)

]
−

√
g (a|w1, a1)

}
, (B.1)

where we treat w2 = w1 as a special case of a modified version of w1 (with no modification).17 The proof of
Lemma 3′ further shows that Θ (w1, a1)2 is the principal’s optimal guarantee using a modified version of w1.

Note that the optimal static contract in Carroll (2015) is still available to the principal. By offering
this contract following the procedure in Carroll (2015), the principal can guarantee that her payoff in the

17By definition, g (a1|w1, a1) = 0. Moreover, it follows from agent 1’s rationality that g (a0|w1, a1) ≥ 0 for all a0 ∈ A0.
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second period is at least Φ (a1)2, where Φ is defined by equation (2). Part 2 of Lemma 3′ shows that when
Φ (a1) > Θ (w1, a1), it is optimal for the principal to offer this optimal static contract in the second period,
and doing so exactly attains payoff guarantee Φ (a1)2.

We are now ready to present the main result of this subsection, Lemma 3′, which characterizes the prin-
cipal’s optimal second-period payoff guarantee V̂∗2 (w1, a1), and establishes the optimality of the aforemen-
tioned contracts. It is optimal for the principal to offer either a modified version of w1 with compensation,
or a linear contract.

Lemma 3′. Suppose the principal offers first-period contract w1, and agent 1 chooses a1 in response. The
principal’s optimal second-period payoff guarantee is

V̂∗2 (w1, a1) = (max {Θ (w1, a1) ,Φ (a1)})2 . (B.2)

Specifically,

1. If Θ (w1, a1) ≥ Φ (a1) and a∗ ∈ A0 ∪ {a1} attains the maximum in equation (B.1), then the principal’s
optimal second-period payoff guarantee is achieved by a modified version of w1:

w2 (y) = w1 (y) + m · (y − w1 (y)) with m =

√
g (a∗|w1, a1)
EFa∗

[
y − w1 (y)

] ∈ [0, 1] . (B.3)

2. If Θ (w1, a1) < Φ (a1) and a∗ ∈ A0 ∪ {a1} attains the maximum in equation (2), then the principal’s
optimal second-period payoff guarantee is achieved by a linear contract:

w2 (y) = s2y with s2 =

√
ca∗

EFa∗

[
y
] . (B.4)

B.2 First Period Analysis

So far, we have focused on principal’s problem in the second period and fully characterized her optimal
second-period payoff guarantee. Now we analyze the principal’s first-period problem of choosing a first-
period contract w1 to maximize her overall payoff guarantee Û (w1).

The following condition, lower bound on marginal cost, is sufficient to ensure that the principal’s
optimal overall payoff guarantee is achieved by a linear first-period contract.

Definition B.1 (Lower bound on marginal cost). The known technology A0 satisfies lower bound on marginal
cost if, for any pair of actions (F, c) , (F′, c′) ∈ A0 with 0 < EF

[
y
]
< EF′

[
y
]
, it holds that

c′ − c ≥ EF′
[
y
]
− EF

[
y
]
.

This condition provides linkage between different actions in the known technology A0. Moreover,
it contains the economic meaning that, between known actions, the change in costs cannot be too small
compared with the change in expected output. Thus, this condition sets a lower bound on the marginal cost
of the known technology in discrete form.

The main result of the first period analysis is Theorem 2′.

Theorem 2′. Suppose the known technology A0 satisfies lower bound on marginal cost. In the case of
constant technology, there exists a linear first-period contract w1 that maximizes the principal’s overall
payoff guarantee Û (w1).
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Analogous to Theorems 1 and 2, the proof of Theorem 2′ takes two steps: (1) Lemma A.4′ improves any
nonlinear first-period contract into a linear one; (2) Lemma A.5′ shows that the maximum of the principal’s
first-period problem exists within the class of linear first-period contracts. We remark that the additional
condition, lower bound on marginal cost, comes into play only in the first step of the proof (i.e., Lemma
A.4′).

We start from any arbitrary first-period contract w1, and construct another linear contract ŵ1 that pro-
vides the principal with a weakly higher overall payoff guarantee. Let a0 = (F0, c0) be the action agent 1
will choose if the true technology A = A0. The procedure of constructing the linear ŵ1 is exactly the same
as in the proof of Lemma A.4, given by equation (3). When the known technology satisfies lower bound
on marginal cost, Lemma A.4′ below shows that the principal’s overall payoff guarantee is at least as high
under ŵ1 as it is under w1.

Lemma A.4′. Suppose the known technology A0 satisfies lower bound on marginal cost. Let w1 be any
first-period contract, and let (F0, c0) ∈ A0 be agent 1’s best response when the true technology A is just A0.
The linear contract ŵ1 defined by equation (3) satisfies U (ŵ1) ≥ U (w1).

Similar to the proof of Lemma A.4, for any action that may be taken by agent 1 under ŵ1 and some
technology A ⊇ A0, the proof of Lemma A.4′ explicitly constructs an alternative action a′1 that may be taken
by agent 1 under w1 and some other technology. The difference between this general case and the singleton
case is that the principal’s optimal second-period payoff guarantee V̂∗2 is given by a more general expression
(B.2), and in particular maximum in Θ or Φ may be attained by a∗ ∈ A0\ {a0}. The condition lower bound
on marginal cost disciplines the relationship between a0 and a∗, which makes the proof method of Lemma
A.4 generalizable. In subsequent research, we hope to examine whether this (or any such) restriction is
necessary, in the sense that there exists a counterexample when it is violated.

By establishing Lemma A.4′, we have shown that any nonlinear first-period contract can be improved
by a linear one. To finalize the proof of Theorem 2′, it suffices to show that, within the class of linear
contracts, the maximum of U (w1) exists.

Lemma A.5′. Within the class of linear first-period contracts, there exists an optimal one for the principal.

The proof of Lemma A.5′ requires to characterize the overall payoff guarantee of an arbitrary linear
first-period contract. Assume the principal offers a linear first-period contract w1(y) = s1y with s1 ∈ [0, 1],
and agent 1 chooses a1 = (F1, c1) in response. As is shown in Lemma 3′, the principal’s optimal second-
period payoff guarantee V̂∗2 (w1, a1) = (max {Θ (w1, a1) ,Φ (a1)})2. Thus, her interim payoff guarantee is

Û (w1|a1) = EF1

[
y − w1(y)

]
+ β · V̂∗2 (w1, a1) = (1 − s1)EF1[y] + β · V̂∗2 (w1, a1) .

The worst-case overall payoff guarantee minimizes the above expression over all a1 that agent 1 may choose
under some technology. Note that agent 1 prefers action a1 over all known actions a ∈ A0 if and only if(

EF1

[
w1(y)

]
− c1

)
−

(
EFa

[
w1(y)

]
− ca

)
=

(
s1EF1[y] − c1

)
−

(
s1EFa[y] − ca

)
≥ 0, ∀a ∈ A0.

Moreover, agent 1 obtains at least his reservation payoff of zero, which can also be viewed as his payoff

from the null action (δ0, 0). Hence, the following program yields a lower bound on the principal’s overall
payoff guarantee

inf
F1,c1

(1 − s1)EF1

[
y
]
+ β · V̂∗2 (w1, (F1, c1))

s.t.
(
s1EF1[y] − c1

)
−

(
s1EFa[y] − ca

)
≥ 0, ∀a ∈ A0 ∪ {(δ0, 0)} ,

(B.5)

because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by
program (B.5).

45



Conversely, for any feasible a1 = (F1, c1) in program (B.5), agent 1 would take action a1 in response
to w1 when his technology A1 = A0 ∪ {a1}. The worst case over all such technologies leaves the principal
with exactly her interim payoff guarantee, Û (w1|a1) = (1 − s1)EF1[y] + β · V̂∗2 (w1, a1). Thus, if a solution to
program (B.5) exists (i.e., if infimum may be replaced by minimum), then the principal’s payoff guarantee
cannot be strictly higher than its minimum value.

Therefore, the worst-case overall payoff guarantee of any linear first-period contract w1(y) = s1y is
exactly characterized by program (B.5). In the proof of Lemma A.5′ in Appendix B.3, we formally show
the existence of minimum in this program, and its continuity in the first-period share s1 using Berge’s
maximum theorem. Since the overall payoff guarantee is continuous in the first-period share s1, it achieves
a maximum. This maximum is also the optimal guarantee over all linear contracts.

Combining Lemmas A.4′ and A.5′, we prove the main result of this section, Theorem 2′, which estab-
lishes the optimality of a linear first-period contract.

B.3 Proofs for Appendix B

To prove Lemma 3′, we start by establishing two lemmas, Lemmas B.1 and B.2, to show that the principal’s
payoff guarantees in the second period from offering the two contracts, (i) w2 (y) = w1 (y) + m · (y − w1 (y))
with m defined by equation (B.3), and (ii) w2 (y) = s2y with s2 defined by equation (B.4), are exactly as
claimed in the statement of Lemma 3′.

Lemma B.1. If Θ (w1, a1) ≥ Φ (a1) and a∗ = (F∗, c∗) ∈ A0 ∪ {a1} attains the maximum in equation (B.1),
and the principal offers w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (B.3), then her payoff
guarantee in the second period is exactly

Θ (w1, a1)2 =

(√
EF∗

[
y − w1 (y)

]
−

√
g (a∗|w1, a1)

)2
.

Proof of Lemma B.1. Let g∗ ≡ g (a∗|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
≥ 0. We have

Θ (w1, a1) =
√
EF∗

[
y − w1 (y)

]
−
√

g∗. From Θ (w1, a1) ≥ Φ (a1) > 0, it holds that

m =

√
g∗

EF∗
[
y − w1 (y)

] ∈ [0, 1] .

Suppose the principal offers w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (B.3). We first
show that this guarantees her at least

( √
EF∗

[
y − w1 (y)

]
−
√

g∗
)2
.

Let (F2, c2) be the action chosen by agent 2. By agent 1’s rationality, we have

EF1

[
w1 (y)

]
− c1 ≥ EF2

[
w1 (y)

]
− c2.

By agent 2’s rationality, we have

EF2

[
w2 (y)

]
− c2 ≥ EF∗

[
w2 (y)

]
− c∗.

Summing up the two inequalities, we obtain

m · EF2

[
y − w1 (y)

]
= EF2

[
w2 (y) − w1 (y)

]
≥

(
EF∗

[
w2 (y)

]
− c∗

)
−

(
EF1

[
w1 (y)

]
− c1

)
= m · EF∗

[
y − w1 (y)

]
− g∗,

implying that
EF2

[
y − w1 (y)

]
≥ EF∗

[
y − w1 (y)

]
− g∗/m.
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Therefore, the principal’s payoff in the second period is

EF2

[
y − w2 (y)

]
= EF2

[
y − w1 (y)

]
− m · EF2

[
y − w1 (y)

]
= (1 − m)EF2

[
y − w1 (y)

]
≥ (1 − m)

(
EF∗

[
y − w1 (y)

]
− g∗/m

)
=

(√
EF∗

[
y − w1 (y)

]
−

√
g∗

)2
,

as desired.
Next we show that her payoff guarantee from w2 (y) = w1 (y) + m · (y − w1 (y)) cannot be strictly

higher than
( √
EF∗

[
y − w1 (y)

]
−
√

g∗
)2

, since this is exactly her payoff when the technology is A = A0 ∪

{a1, (F′, c′)}, with F′ = (1 − m) F∗ + m · δ0 and c′ = c∗ −
(
m · EF∗

[
w1 (y)

]
+ g∗

)
.

The proof takes three steps.

Step 1 c∗ ≥ m · EF∗
[
w1 (y)

]
+ g∗, so c′ is indeed nonnegative.

From Θ (w1, a1) ≥ Φ (a1), we obtain√
EF∗

[
y − w1 (y)

]
−

√
g∗ = Θ (w1, a1) ≥ Φ (a1) ≥

√
EF∗[y] −

√
c∗,

which implies that

c∗ ≥
( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

]
+

√
g∗

)2

It suffices to show( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

]
+

√
g∗

)2
≥ m · EF∗

[
w1 (y)

]
+ g∗

⇔

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])2
≥ m · EF∗

[
w1 (y)

]
− 2

√
g∗ ·

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])
⇔

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])2
≥ m ·

(
EF∗

[
w1 (y)

]
− 2

√
EF∗

[
y − w1 (y)

]
·

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

]))
.

(B.6)

Note that

EF∗
[
w1 (y)

]
− 2

√
EF∗

[
y − w1 (y)

]
·

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])
=EF∗

[
w1 (y)

]
− 2

√
EF∗

[
y − w1 (y)

]
·

EF∗
[
w1 (y)

]√
EF∗[y] +

√
EF∗

[
y − w1 (y)

]
=

EF∗
[
w1 (y)

]√
EF∗[y] +

√
EF∗

[
y − w1 (y)

] · ( √EF∗[y] +

√
EF∗

[
y − w1 (y)

]
− 2

√
EF∗

[
y − w1 (y)

])
=

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])
·

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])
=

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])2
.

Therefore, inequality (B.6) is equivalent to( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])2
≥ m ·

( √
EF∗[y] −

√
EF∗

[
y − w1 (y)

])2
,

which is implied by the assumption that
√
EF∗

[
y − w1 (y)

]
≥
√

g∗ (or equivalently, m ≤ 1).

Step 2 A = A0 ∪ {a1, (F′, c′)} is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
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Agent 1’s payoff from (F′, c′) is

EF′
[
w1(y)

]
− c′ = (1 − m)EF∗

[
w1(y)

]
− c∗ +

(
m · EF∗

[
w1 (y)

]
+ g∗

)
=

(
EF∗

[
w1 (y)

]
− c∗

)
+ g∗ = EF1

[
w1 (y)

]
− c1,

so he would choose a1 = (F1, c1) in response to w1.
Note that agent 1 is actually indifferent between (F1, c1) and (F′, c′), and we will show below that agent

2 is indifferent between (F∗, c∗) and (F′, c′). Technically to ensure that agent 1 chooses (F1, c1) and agent
2 chooses (F′, c′) we can set F′ = (1 − m + ε) F∗ + (m − ε) δ0 and c′ = c∗ −

(
m · EF∗

[
w1 (y)

]
+ g∗

)
+ ε ·

EF∗
[
w1 (y) + (m/2) · (y − w1 (y))

]
, and then let ε ↓ 0. Many of the following cases of potential indifference

shall be treated similarly, and we omit them for brevity.

Step 3 If A = A0 ∪ {a1, (F′, c′)}, then agent 2 chooses (F′, c′) in response to w2, leading to a payoff of( √
EF∗

[
y − w1 (y)

]
−
√

g∗
)2

for the principal.
Agent 2’s payoff from (F′, c′) is

EF′
[
w2(y)

]
− c′ = (1 − m)EF∗

[
w1 (y) + m · (y − w1 (y))

]
− c∗ +

(
m · EF∗

[
w1 (y)

]
+ g∗

)
= EF∗

[
w1 (y)

]
+ m · EF∗

[
y − w1 (y)

]
− m2 · EF∗

[
y − w1 (y)

]
− c∗ + g∗

= EF∗
[
w2 (y)

]
− g∗ − c∗ + g∗ = EF∗

[
w2 (y)

]
− c∗.

For any action a0 = (F0, c0) ∈ A0∪{a1}, let g0 ≡ g (a0|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
≥ 0.

Agent 2’s payoff from a0 is

EF0

[
w2(y)

]
− c0 = EF0

[
w1(y) + m · (y − w1 (y))

]
− c0 = m · EF0

[
y − w1 (y)

]
+

(
EF0

[
w1(y)

]
− c0

)
.

Note that √
EF∗

[
y − w1 (y)

]
−

√
g∗ = Θ (w1, a1) ≥

√
EF0

[
y − w1 (y)

]
−
√

g0

⇒ EF0

[
y − w1 (y)

]
≤

(√
EF∗

[
y − w1 (y)

]
−

√
g∗ +

√
g0

)2
.

Moreover,

EF0

[
w1(y)

]
− c0 =

(
EF1

[
w1 (y)

]
− c1

)
− g0 =

(
EF∗

[
w1 (y)

]
− c∗

)
+ g∗ − g0.

Thus, agent 2’s payoff from a0,

EF0

[
w2(y)

]
− c0 = m · EF0

[
y − w1 (y)

]
+

(
EF0

[
w1(y)

]
− c0

)
≤ m ·

(√
EF∗

[
y − w1 (y)

]
−

√
g∗ +

√
g0

)2
+

(
EF∗

[
w1 (y)

]
− c∗

)
+ g∗ − g0

≤ m · EF∗
[
y − w1 (y)

]
+

(
EF∗

[
w1(y)

]
− c∗

)
(B.7)

= EF∗
[
w2 (y)

]
− c∗ = EF′

[
w2 (y)

]
− c′,

so he would choose (F′, c′) in response to w2. Recall m =
√

g∗/EF∗
[
y − w1 (y)

]
, so the last inequality (B.7)
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is equivalent to

m ·
(√
EF∗

[
y − w1 (y)

]
−

√
g∗ +

√
g0

)2
+ g∗ − g0 ≤ m · EF∗

[
y − w1 (y)

]
⇔

1 −
√

g∗

EF∗
[
y − w1 (y)

] (√g0 −
√

g∗
)
≥ 0,

which always holds.
This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= EF′

[
y − w1 (y)

]
− m · EF′

[
y − w1 (y)

]
= (1 − m)EF′

[
y − w1 (y)

]
= (1 − m)2 EF∗

[
y − w1 (y)

]
=

(√
EF∗

[
y − w1 (y)

]
−

√
g∗

)2
,

as desired.

This completes the proof. �

Lemma B.2. If Θ (w1, a1) < Φ (a1) and (F∗, c∗) ∈ A0 ∪ {a1} attains the maximum in equation (2), and the
principal offers the linear contract w2 (y) = s2y with s2 defined by equation (B.4), then her payoff guarantee
in the second period is exactly

Φ (a1)2 =
( √
EF∗[y] −

√
c∗

)2
.

Proof of Lemma B.2. Suppose the principal offers the linear contract w2 (y) = s2y with s2 defined by equa-
tion (B.4). We first show that this guarantees her at least

( √
EF∗

[
y
]
−
√

c∗
)2
.

Let (F2, c2) be the action chosen by agent 2. By agent 2’s rationality, we have

EF2

[
w2 (y)

]
− c2 ≥ EF∗

[
w2 (y)

]
− c∗,

which further implies that

s2EF2[y] = EF2

[
w2(y)

]
≥ EF2

[
w2(y)

]
− c2 ≥ EF∗

[
w2(y)

]
− c∗ = s2EF∗[y] − c∗,

and hence
EF2[y] ≥ EF∗[y] − c∗/s2.

Therefore, the principal’s payoff in the second period is

EF2

[
y − w2(y)

]
= EF2

[
(1 − s2) y

]
≥ (1 − s2)

(
EF∗[y] − c∗/s2

)
=

( √
EF∗[y] −

√
c∗

)2
,

as desired.
Next we show that her payoff guarantee from this linear contract cannot be strictly higher, since( √
EF∗

[
y
]
−
√

c∗
)2

is exactly her payoff when the technology is A = A0 ∪ {a1, (F′, 0)}, with F′ = λF∗ + (1−
λ)δ0 where λ = 1 −

√
c∗/EF∗[y] ∈ [0, 1].

The proof takes two steps. Let g∗ ≡ g (a∗|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
≥ 0.

Step 1 A = A0 ∪ {a1, (F′, 0)} is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, 0) is EF′

[
w1(y)

]
= λEF∗

[
w1(y)

]
=

(
1 −

√
c∗/EF∗[y]

)
EF∗

[
w1(y)

]
, and we
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have(
1 −

√
c∗

EF∗[y]

)
EF∗

[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1 ⇔

(
1 −

√
c∗

EF∗[y]

)
EF∗

[
w1(y)

]
≤

(
EF∗

[
w1(y)

]
− c∗

)
+ g∗

⇔

√
c∗

EF∗[y]
EF∗

[
w1(y)

]
− c∗ + g∗ ≥ 0.

From √
EF∗

[
y
]
−
√

c∗ = Φ (a1) > Θ (w1, a1) ≥
√
EF∗

[
y − w1(y)

]
−

√
g∗,

we obtain

EF∗
[
w1(y)

]
≥ EF∗[y] −

( √
EF∗[y] −

√
c∗ +

√
g∗

)2
,

and thus√
c∗

EF∗[y]
EF∗

[
w1(y)

]
− c∗ + g∗ ≥

√
c∗

EF∗[y]
·

(
EF∗[y] −

( √
EF∗[y] −

√
c∗ +

√
g∗

)2
)
− c∗ + g∗

=

(
1 −

√
c∗

EF∗[y]

) (√
c∗ −

√
g∗

)2
≥ 0,

as desired. So we indeed have EF′
[
w1(y)

]
≤ EF1

[
w1(y)

]
− c1, implying that agent 1 would choose a1 =

(F1, c1) in response to w1.

Step 2 If A = A0 ∪ {a1, (F′, 0)}, then agent 2 chooses (F′, 0) in response to w2, leading to a payoff of( √
EF∗

[
y
]
−
√

c∗
)2

for the principal.
Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF∗

[
s2y

]
=

(
1 −

√
c∗

EF∗[y]

)
·

√
c∗

EF∗[y]
· EF∗[y]

=
( √
EF∗[y] −

√
c∗

) √
c∗ =

√
c∗

EF∗[y]
· EF∗[y] − c∗

= s2EF∗[y] − c∗ = EF∗
[
w2(y)

]
− c∗.

For any action a0 = (F0, c0) ∈ A0 ∪ {a1}, agent 2’s payoff from a0 is

EF0

[
w2(y)

]
− c0 =

√
c∗

EF∗[y]
· EF0[y] − c0,

and we have√
c∗

EF∗[y]
· EF0[y] − c0 ≤ EF∗

[
w2(y)

]
− c∗ ⇔

√
c∗

EF∗[y]
· EF0[y] − c0 ≤

( √
EF∗[y] −

√
c∗

) √
c∗.
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From
√
EF∗

[
y
]
−
√

c∗ = Φ (a1) ≥
√
EF0

[
y
]
−
√

c0, we obtain EF0[y] ≤
( √
EF∗[y] −

√
c∗ +

√
c0

)2
, and thus

( √
EF∗[y] −

√
c∗

) √
c∗ −

(√
c∗

EF∗[y]
· EF0[y] − c0

)
≥

( √
EF∗[y] −

√
c∗

) √
c∗ −

(√
c∗

EF∗[y]
·
( √
EF∗[y] −

√
c∗ +

√
c0

)2
− c0

)
=

(
1 −

√
c∗

EF∗[y]

) (√
c∗ −

√
c0

)2
≥ 0,

as desired. So we indeed have EF0

[
w2(y)

]
−c0 ≤ EF∗

[
w2(y)

]
−c∗ = EF′

[
w2(y)

]
, implying that agent 2 would

choose (F′, 0) in response to w2.
This leaves the principal with a payoff of

EF′
[
y − w2(y)

]
= λEF∗

[
(1 − s2) y

]
=

(
1 −

√
c∗

EF∗[y]

) (
1 −

√
c∗

EF∗[y]

)
· EF∗[y]

=

(√
EF∗

[
y
]
−
√

c∗
)2
,

as desired.

This completes the proof. �

We are now ready to prove Lemma 3′.

Proof of Lemma 3′. Combining Lemmas B.1 and B.2, we have shown that by offering the best of the two
contracts: (i) w2 (y) = w1 (y) + m · (y − w1 (y)) with m defined by equation (B.3), and (ii) w2 (y) = s2y
with s2 defined by equation (B.4), the principal’s payoff guarantee in the second period is exactly given by
(max {Θ (w1, a1) ,Φ (a1)})2 . The principal’s optimal second-period payoff guarantee, V∗2 (w1, a1), is thus at
least (max {Θ (w1, a1) ,Φ (a1)})2 .

Now consider an arbitrary second-period contract w2. It suffices to show that the principal’s payoff

guarantee is not strictly higher than (max {Θ (w1, a1) ,Φ (a1)})2 under w2.
Let a0 = (F0, c0) be the action agent 2 will choose if the true technology is exactly A0 ∪ {a1}. Consider

the following three cases.

Case 1. EF0

[
w2(y)

]
< c0.

Consider the second-period contract w2 when A = A0 ∪ {a1, (δ0, 0)}, which is compatible with (w1, a1).
Agent 2’s payoff from (δ0, 0) is

w2(0) ≥ 0 > EF0

[
w2(y)

]
− c0,

so he would prefer to take action (δ0, 0). This leaves the principal with a payoff of

−w2(0) ≤ 0 ≤ Φ (a1)2 ,

as desired.
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Case 2. EF0

[
w2(y)

]
≥ c0, and it holds that

either (i) EF0

[
w1(y)

]
≤ EF1

[
w1 (y)

]
− c1,

or (ii) EF0

[
w2 (y)

]
<

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0.
(B.8)

Let λ = 1 − c0/EF0

[
w2 (y)

]
∈ [0, 1] and let F′ be the mixture λF0 + (1 − λ)δ0. Consider the technology

A = A0 ∪ {a1, (F′, 0)}. We proceed with two steps.

Step 1 A is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, 0) is

EF′
[
w1(y)

]
= λEF0

[
w1(y)

]
= EF0

[
w1 (y)

]
−
EF0

[
w1(y)

]
EF0

[
w2(y)

]c0

< EF1

[
w1 (y)

]
− c1. (B.9)

Note that inequality (B.9) holds exactly due to the assumptions in (B.8). So agent 1 would prefer to take
action a1 = (F1, c1) when A = A0 ∪ {a1, (F′, 0)}.

Step 2 Agent 2 chooses (F′, 0) in response to w2, resulting in the principal’s payoff no more than Φ (a1)2.
Agent 2’s payoff from (F′, 0) is

EF′
[
w2(y)

]
= λEF0

[
w2(y)

]
+ (1 − λ)w2(0)

≥ λEF0

[
w2(y)

]
= EF0

[
w2(y)

]
− c0.

So he would prefer to take action (F′, 0) when A = A0 ∪ {a1, (F′, 0)}.
This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
y − w2 (y)

]
+ (1 − λ) (0 − w2 (0))

≤ λEF0

[
y − w2 (y)

]
=

(
1 −

c0

EF0

[
w2 (y)

] ) (EF0

[
y
]
− EF0

[
w2 (y)

])
≤

( √
EF0[y] −

√
c0

)2
, (B.10)

which is no more than Φ (a1)2, as desired. The last inequality (B.10),(
1 −

c0

EF0

[
w2 (y)

] ) (EF0

[
y
]
− EF0

[
w2 (y)

])
≤

( √
EF0[y] −

√
c0

)2

⇔

√EF0

[
w2 (y)

]
−

√
c0EF0

[
y
]

EF0

[
w2 (y)

]
2

≥ 0,

which always holds.

Case 3. Both inequalities in (B.8) are reversed, i.e.,

EF0

[
w1(y)

]
> EF1

[
w1 (y)

]
− c1 and EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0.
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Let

λ =

(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ,

c′ =
EF0

[
w1 (y)

] (
EF0

[
w2 (y)

]
− c0

)
− EF0

[
w2 (y)

] (
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ,

and let F′ be the mixture λF0 + (1− λ)δ0. Consider the technology A = A0 ∪ {a1, (F′, c′)}. We proceed with
three steps.

Step 1 λ ∈ [0, 1] and c′ ≥ 0, so (F′, c′) is a valid action.
Note that

EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0 ≥
EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF0

[
w1 (y)

]
− c0

)c0 = EF0

[
w1(y)

]
,

so the denominator of λ and c′ is positive.
Moreover,

EF0

[
w2 (y)

]
− c0 ≥

EF1

[
w1 (y)

]
− c1

EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0

≥
EF1

[
w1 (y)

]
− c1

EF0

[
w1(y)

]
−

(
EF0

[
w1 (y)

]
− c0

)c0 = EF1

[
w1 (y)

]
− c1,

so the numerator of λ is positive.
The numerator of c′ is positive because

EF0

[
w1 (y)

] (
EF0

[
w2 (y)

]
− c0

)
≥ EF0

[
w2 (y)

] (
EF1

[
w1 (y)

]
− c1

)
⇔ EF0

[
w2 (y)

]
≥

EF0

[
w1(y)

]
EF0

[
w1(y)

]
−

(
EF1

[
w1 (y)

]
− c1

)c0.

Finally, (
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
≤ EF0

[
w2 (y)

]
− EF0

[
w1 (y)

]
⇔ EF0

[
w1 (y)

]
− c0 ≤ EF1

[
w1 (y)

]
− c1,

so λ is indeed smaller than 1.

Step 2 A is compatible with (w1, a1). That is, agent 1 chooses a1 in response to w1.
Agent 1’s payoff from (F′, c′) is

EF′
[
w1(y)

]
− c′ = λEF0

[
w1(y)

]
− c′ = EF1

[
w1 (y)

]
− c1,

so he would prefer to take action a1 = (F1, c1) when A = A0 ∪ {a1, (F′, c′)}.

Step 3 Agent 2 chooses (F′, c′) in response to w2, resulting in the principal’s payoff no more than Θ (w1, a1)2.
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Agent 2’s payoff from (F′, c′) is

EF′
[
w2(y)

]
− c′ = λEF0

[
w2(y)

]
+ (1 − λ)w2(0) − c′

≥ λEF0

[
w2(y)

]
− c′ = EF0

[
w2(y)

]
− c0.

So he would prefer to take action (F′, c′) when A = A0 ∪ {a1, (F′, c′)}.
This leaves the principal with a payoff of

EF′
[
y − w2 (y)

]
= λEF0

[
y − w2 (y)

]
+ (1 − λ) (0 − w2 (0))

≤ λEF0

[
y − w2 (y)

]
=

(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] (
EF0

[
y
]
− EF0

[
w2 (y)

])
≤

(√
EF0

[
y − w1 (y)

]
−

√
g (a0|w1, a1)

)2
, (B.11)

which is no more than Φ (w1, a1)2, as desired. The last inequality (B.11),(
EF0

[
w2 (y)

]
− c0

)
−

(
EF1

[
w1 (y)

]
− c1

)
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] (
EF0

[
y
]
− EF0

[
w2 (y)

])
≤

(√
EF0

[
y − w1 (y)

]
−

√
g (a0|w1, a1)

)2

⇔

(
EF0

[
w2 (y)

]
− EF0

[
w1 (y)

]
−

√
EF0

[
y − w1 (y)

]
·
√

g (a0|w1, a1)
)2

EF0

[
w2 (y)

]
− EF0

[
w1 (y)

] ≥ 0,

which always holds. (Recall that g (a0|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
≥ 0.)

Summing up the above three cases, we prove that the principal’s payoff guarantee is not strictly higher
than (max {Θ (w1, a1) ,Φ (a1)})2 under any second-period contract w2.

This completes the proof. �

B.3.1 Proofs for Subsection B.2

To prove Lemma A.4′, we start by establishing the following Lemma B.3.

Lemma B.3. Suppose the known technology A0 satisfies lower bound on marginal cost. If Θ (w1, a1) ≥
Φ (a1) and a∗ = (F∗, c∗) ∈ A0 attains the maximum in equation (B.1), then (i) c∗ ≤ c0, (ii) EF∗

[
y
]
≤ EF0

[
y
]
,

and (iii) EF∗
[
w1 (y)

]
≤ EF∗

[
ŵ1 (y)

]
= s1EF∗

[
y
]
, where ŵ1 is defined by equation (3).

Proof of Lemma B.3. Let g0 ≡ g (a0|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
≥ 0, and g∗ ≡

g (a∗|w1, a1) =
(
EF1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
≥ 0. By assumption, we have

EF0

[
w1 (y)

]
− c0 ≥ EF∗

[
w1 (y)

]
− c∗ ⇒ g∗ ≥ g0.

Note that √
EF∗

[
y − w1 (y)

]
−

√
g∗ = Θ (w1, a1) ≥

√
EF0

[
y − w1 (y)

]
−
√

g0. (B.12)

We first argue that c∗ ≤ c0 must hold, otherwise there will be a contradiction to the assumption that A0
satisfies lower bound on marginal cost.

Suppose not, i.e., c∗ > c0. Consider the following two cases.

Case 1.
√
EF0

[
y − w1 (y)

]
≥
√

g0.
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From equation (B.12) we obtain(
EF∗

[
y − w1 (y)

])
−

(
EF0

[
y − w1 (y)

])√
EF∗

[
y − w1 (y)

]
+

√
EF0

[
y − w1 (y)

] =

√
EF∗

[
y − w1 (y)

]
−

√
EF0

[
y − w1 (y)

]
≥

√
g∗ −

√
g0 =

(
EF0

[
w1 (y)

]
− c0

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
√

g∗ +
√

g0
.

Since
√
EF∗

[
y − w1 (y)

]
>
√

g∗ and
√
EF0

[
y − w1 (y)

]
≥
√

g0, the above expression implies that(
EF∗

[
y − w1 (y)

])
−

(
EF0

[
y − w1 (y)

])
>

(
EF0

[
w1 (y)

]
− c0

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
⇒ EF∗

[
y
]
− EF0

[
y
]
> c∗ − c0 > 0,

a contradiction to the assumption that A0 satisfies lower bound on marginal cost!

Case 2.
√
EF0

[
y − w1 (y)

]
<
√

g0.
We have

EF0

[
y − w1 (y)

]
< g0 =

(
EF1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
⇒ EF0

[
y
]
− c0 < EF1

[
w1 (y)

]
− c1.

Similarly, from Θ (w1, a1) ≥ Φ (a1) > 0, we have
√
EF∗

[
y − w1 (y)

]
−
√

g∗ > 0 , and thus

EF∗
[
y − w1 (y)

]
> g∗ =

(
EF1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
⇒ EF∗

[
y
]
− c∗ > EF1

[
w1 (y)

]
− c1.

It follows that
EF∗

[
y
]
− c∗ > EF0

[
y
]
− c0 ⇒ EF∗

[
y
]
− EF0

[
y
]
> c∗ − c0 > 0,

another contradiction to the assumption that A0 satisfies lower bound on marginal cost!

Summing up the above two cases, we show that c∗ ≤ c0. It follows from lower bound on marginal cost
that EF∗

[
y
]
≤ EF0

[
y
]
.

Moreover, EF0

[
w1 (y)

]
− c0 ≥ EF∗

[
w1 (y)

]
− c∗ implies that

EF0

[
w1 (y)

]
− EF∗

[
w1 (y)

]
≥ c0 − c∗ ≥ 0 ⇒ EF0

[
w1 (y)

]
≥ EF∗

[
w1 (y)

]
.

Equation (B.12) implies that√
EF∗

[
y − w1 (y)

]
−

√
EF0

[
y − w1 (y)

]
≥

√
g∗ −

√
g0 ≥ 0 ⇒ EF∗

[
y − w1 (y)

]
≥ EF0

[
y − w1 (y)

]
.

Combining the above two inequalities, we have

EF∗
[
y − w1 (y)

]
EF∗

[
w1 (y)

] ≥
EF0

[
y − w1 (y)

]
EF0

[
w1 (y)

]
⇒

EF∗
[
y
]

EF∗
[
w1 (y)

] ≥ EF0

[
y
]

EF0

[
w1 (y)

] =
1
s1

(B.13)

⇒ EF∗
[
w1 (y)

]
≤ s1EF∗

[
y
]
,

as desired. The equality in (B.13) follows from the definition in (3). �

Proof of Lemma A.4′. Consider an arbitrary action a1 = (F1, c1) agent 1 would take under contract ŵ1. We
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need to show that the principal’s interim payoff guarantee, U (ŵ1|a1), is at least U (w1). Lemma 3′ shows
that the principal’s optimal second-period payoff guarantee is

V̂∗2 (ŵ1, a1) = (max {Θ (ŵ1, a1) ,Φ (a1)})2 ,

where

Θ (ŵ1, a1) = max
a∈A0∪{a1}

{√
EFa

[
y − ŵ1 (y)

]
−

√
g (a|ŵ1, a1)

}
,

Φ (a1) = max
a∈A0∪{a1}

{ √
EFa[y] −

√
ca

}
,

and her interim payoff guarantee is

Û (ŵ1|a1) = EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) .

It suffices to construct another action a′1, which may be taken by agent 1 under w1 and some other
technology, such that Û

(
w1

∣∣∣a′1) ≤ Û (ŵ1|a1). By assumption, a0 is agent 1’s best response if A = A0, so an
action a′1 may be taken by agent 1 under w1 if and only if the incentive gap with respect to a0 is nonnegative,
i.e., g

(
a0

∣∣∣w1, a′1
)
≥ 0. Consider the following two cases.

Case 1. EF1

[
y
]
≥ EF0

[
y
]
.

Let a′1 = a0. When agent 1 takes action a0 in response to w1, the principal’s resulting payoff in the first
period is

EF0

[
y − w1(y)

]
= (1 − s1)EF0

[
y
]
≤ (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under (w1|a0) is weakly lower than under (ŵ1|a1).
Moreover, it follows from Lemma 3′ that the principal’s optimal second-period payoff guarantee is

V̂∗2 (w1, a0) = (max {Θ (w1, a0) ,Φ (a0)})2 .

We now show that V̂∗2 (w1, a0) ≤ V̂∗2 (ŵ1, a1), which is equivalent to

max {Θ (w1, a0) ,Φ (a0)} ≤ max {Θ (w1, a1) ,Φ (a1)} .

Note that

Θ (w1, a0) = max
a∈A0

{√
EFa

[
y − w1 (y)

]
−

√
g (a|w1, a0)

}
,

Φ (a0) = max
a∈A0

{ √
EFa[y] −

√
ca

}
.

By definition we have 0 < Φ (a0) ≤ Φ (a1). Thus, it suffices to show that whenever Θ (w1, a0) > Φ (a0), it
holds that Θ (w1, a0) ≤ Θ (ŵ1, a1) .

Let a∗ = (F∗, c∗) ∈ A0 attains the maximum in Θ (w1, a0). It follows from Lemma B.3 that EF∗
[
y
]
≤

EF0

[
y
]
≤ EF1

[
y
]

and EF∗
[
w1 (y)

]
≤ s1EF∗

[
y
]
.

We claim that

Θ (w1, a0) =

√
EF∗

[
y − w1 (y)

]
−

√
g (a∗|w1, a0) ≤

√
EF1

[
y − ŵ1 (y)

]
≤ Θ (ŵ1, a1) .
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must hold. Suppose not, then√
EF∗

[
y − w1 (y)

]
−

√
g (a∗|w1, a0) >

√
EF1

[
y − ŵ1 (y)

]
,

which implies that√
(1 − s1)EF∗

[
y
]
≥

√
EF∗

[
y − w1 (y)

]
−

√
g (a∗|w1, a0) >

√
EF1

[
y − ŵ1 (y)

]
=

√
(1 − s1)EF1

[
y
]
,

a contradiction to EF∗
[
y
]
≤ EF1

[
y
]
!

Therefore, whenever Θ (w1, a0) > Φ (a0), it holds that Θ (w1, a0) ≤ Θ (ŵ1, a1) ,which implies V̂∗2 (w1, a0) ≤
V̂∗2 (ŵ1, a1). The principal’s interim payoff guarantee is

Û (w1|a0) = EF0

[
y − w1(y)

]
+ β · V̂∗2 (w1, a0)

≤ EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) = Û (ŵ1|a1) ,

as desired.

Case 2. EF1

[
y
]
< EF0

[
y
]
.

Let λ = EF1[y]/EF0[y] ∈ [0, 1] and let F′1 be the mixture λF0 + (1 − λ) δ0. Note that EF′1

[
y
]

= EF1[y].

Consider a′1 =
(
F′1, c1

)
. For any action a, the corresponding incentive gap with respect to a is

g
(
a
∣∣∣w1, a′1

)
=

(
EF′1

[
w1 (y)

]
− c1

)
−

(
EFa

[
w1 (y)

]
− ca

)
.

Note that

EF′1

[
w1 (y)

]
− c1 = λEF0

[
w1 (y)

]
− c1 = λs1EF0

[
y
]
− c1 = s1EF1

[
y
]
− c1 = EF1

[
ŵ1 (y)

]
− c1,

and
EF0

[
w1 (y)

]
− c0 = s1EF0

[
y
]
− c0 = EF0

[
ŵ1 (y)

]
− c0.

Thus,

g
(
a0

∣∣∣w1, a′1
)

=
(
EF′1

[
w1 (y)

]
− c1

)
−

(
EF0

[
w1 (y)

]
− c0

)
=

(
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF0

[
ŵ1 (y)

]
− c0

)
= g (a0|ŵ1, a1) ≥ 0,

implying that a′1 may be chosen by agent 1 in response to w1 under some technology.
When agent 1 chooses action a′1 in response, the principal’s resulting payoff in the first period is

EF′1

[
y − w1(y)

]
= λEF0

[
y − w1(y)

]
= λ (1 − s1)EF0

[
y
]

= (1 − s1)EF1

[
y
]

= EF1

[
y − ŵ1(y)

]
,

so her payoff in the first period under
(
w1

∣∣∣a′1) and under (ŵ1|a1) are exactly equal.
Moreover, it follows from Lemma 3′ that the principal’s optimal second-period payoff guarantee under(

w1
∣∣∣a′1) is

V̂∗2
(
w1, a′1

)
=

(
max

{
Θ

(
w1, a′1

)
,Φ

(
a′1

)})2
.
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We now show that V̂∗2
(
w1, a′1

)
≤ V̂∗2

(
ŵ1, a′1

)
, which is equivalent to

max
{
Θ

(
w1, a′1

)
,Φ

(
a′1

)}
≤ max {Θ (w1, a1) ,Φ (a1)} .

Note that

Θ
(
w1, a′1

)
= max

a∈A0∪{a′1}

{√
EFa

[
y − w1 (y)

]
−

√
g
(
a
∣∣∣w1, a′1

)}
,

Φ
(
a′1

)
= max

a∈A0∪{a′1}

{ √
EFa[y] −

√
ca

}
.

From EF′1

[
y
]

= EF1[y], it follows that Φ
(
a′1

)
= Φ (a1) > 0. Thus, it suffices to show that whenever

Θ
(
w1, a′1

)
> Φ

(
a′1

)
, it holds that Θ

(
w1, a′1

)
≤ Θ (ŵ1, a1) .

Let a∗ = (F∗, c∗) ∈ A0 ∪
{
a′1

}
attains the maximum in Θ

(
w1, a′1

)
.

1. If a∗ = a′1, then

Θ
(
w1, a′1

)
=

√
EF′1

[
y − w1 (y)

]
−

√
g
(
a′1

∣∣∣w1, a′1
)

=

√
EF1

[
y − ŵ1 (y)

]
−

√
g (a1|ŵ1, a1) ≤ Θ (ŵ1, a1) ,

as desired.

2. If a∗ ∈ A0, then it follows from Lemma B.3 that EF∗
[
w1 (y)

]
≤ EF∗

[
ŵ1 (y)

]
.

From Θ
(
w1, a′1

)
> Φ

(
a′1

)
> 0, we have Θ

(
w1, a′1

)
=

√
EF∗

[
y − w1 (y)

]
−

√
g
(
a∗

∣∣∣w1, a′1
)
> 0, and thus

EF∗
[
y − w1 (y)

]
> g

(
a∗

∣∣∣w1, a′1
)

=
(
EF′1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

)
⇒ EF∗

[
y
]
− c∗ > EF′1

[
w1 (y)

]
− c1 = EF1

[
ŵ1 (y)

]
− c1

⇒ EF∗
[
y − ŵ1 (y)

]
>

(
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF∗

[
ŵ1 (y)

]
− c∗

)
= g

(
a∗

∣∣∣ŵ1, a1
)
.

We claim that

Θ
(
w1, a′1

)
=

√
EF∗

[
y − w1 (y)

]
−

√
g
(
a∗

∣∣∣w1, a′1
)
≤

√
EF∗

[
y − ŵ1 (y)

]
−

√
g (a∗|ŵ1, a1) ≤ Θ (ŵ1, a1) .

must hold. Suppose not, then√
EF∗

[
y − w1 (y)

]
−

√
g
(
a∗

∣∣∣w1, a′1
)
≤

√
EF∗

[
y − ŵ1 (y)

]
−

√
g (a∗|ŵ1, a1)

⇔

√
EF∗

[
y − w1 (y)

]
−

√
EF∗

[
y − ŵ1 (y)

]
≤

√
g
(
a∗

∣∣∣w1, a′1
)
−

√
g (a∗|ŵ1, a1)

⇔
EF∗

[
y − w1 (y)

]
− EF∗

[
y − ŵ1 (y)

]√
EF∗

[
y − w1 (y)

]
+

√
EF∗

[
y − ŵ1 (y)

] ≤ g
(
a∗

∣∣∣w1, a′1
)
− g (a∗|ŵ1, a1)√

g
(
a∗

∣∣∣w1, a′1
)

+
√

g (a∗|ŵ1, a1)
. (B.14)

Note that

EF∗
[
y − w1 (y)

]
− EF∗

[
y − ŵ1 (y)

]
= EF∗

[
ŵ1 (y)

]
− EF∗

[
w1 (y)

]
≥ 0,
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and that

g
(
a∗

∣∣∣w1, a′1
)
− g

(
a∗

∣∣∣ŵ1, a1
)

=
((
EF′1

[
w1 (y)

]
− c1

)
−

(
EF∗

[
w1 (y)

]
− c∗

))
−

((
EF1

[
ŵ1 (y)

]
− c1

)
−

(
EF∗

[
ŵ1 (y)

]
− c∗

))
=EF∗

[
ŵ1 (y)

]
− EF∗

[
w1 (y)

]
≥ 0.

Therefore, inequality (B.14) is equivalent to

EF∗
[
ŵ1 (y)

]
− EF∗

[
w1 (y)

]√
EF∗

[
y − w1 (y)

]
+

√
EF∗

[
y − ŵ1 (y)

] ≤ EF∗
[
ŵ1 (y)

]
− EF∗

[
w1 (y)

]√
g
(
a∗

∣∣∣w1, a′1
)

+
√

g (a∗|ŵ1, a1)
,

which is implied by EF∗
[
y − w1 (y)

]
> g

(
a∗

∣∣∣w1, a′1
)

and EF∗
[
y − ŵ1 (y)

]
> g (a∗|ŵ1, a1).

Therefore, whenever Θ
(
w1, a′1

)
> Φ

(
a′1

)
, it holds that Θ

(
w1, a′1

)
≤ Θ

(
ŵ1, a′1

)
, which implies V̂∗2

(
w1, a′1

)
≤

V̂∗2 (ŵ1, a1). The principal’s interim payoff guarantee is

Û
(
w1

∣∣∣a′1) = EF′1

[
y − w1(y)

]
+ β · V̂∗2

(
w1, a′1

)
≤ EF1

[
y − ŵ1(y)

]
+ β · V̂∗2 (ŵ1, a1) = Û (ŵ1|a1) ,

as desired.

This completes the proof. �

Proof of Lemma A.5′. We first reformulate program (B.5) as an equivalent maximization problem with con-
tinuous objective function and compact feasible region. Slightly abusing notation, we use Û (s1) instead of
Û (w1) to denote the infimum value of program (B.5).

Plug w1 (y) = s1y into equation (B.1). We may rewrite Θ (w1, a1) as

Θ (w1, a1) = max
a∈A0∪{a1}

{√
(1 − s1)EFa

[
y
]
−

√
g (a|w1, a1)

}
.

Similarly, for a ∈ A0 ∪ {a1},

g (a|w1, a1) =
(
s1EF1[y] − c1

)
−

(
s1EFa[y] − ca

)
≥ 0.

Note that both the objective and the constraints of program (B.5) depend on the choice variables (F1, c1)
only through the value of

(
EF1

[
y
]
, c1

)
. Rewrite EF1

[
y
]

= x and c1 = z with x, z ≥ 0. Plugging into the
original program (B.5), we obtain an equivalent program

Û (s1) = inf
x,z

(1 − s1) x + β ·max {θ (x, z; s1) , φ (x, z)}2

s.t. s1x − z ≥ max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}
, x, z ≥ 0,

(B.15)

where

θ (x, z; s1) ≡ max
{√

(1 − s1) x, max
a∈A0

{√
(1 − s1)EFa

[
y
]
−

√
(s1x − z) −

(
s1EFa

[
y
]
− ca

)}}
, (B.16)

and φ is defined by equation (A.2).
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Let x ≡ maxa∈A0 EFa[y] > 0, and v ≡ maxa∈A0

{ √
EFa[y] −

√
ca

}
> 0. Suppose

(F0, c0) ∈ arg max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}
.

Note that (x0, z0) =
(
EF0

[
y
]
, c0

)
is feasible in program (B.15) and leads to objective value

(1 − s1) x0 + β ·max {θ (x0, z0; s1) , φ (x0, z0)}2 ≤ (1 − s1) x + β ·max
{ √

(1 − s1) x, v
}2
.

If x ≥ (1 + β) x, then

(1 − s1) x + β ·max {θ (x, z; s1) , φ (x, z)}2 ≥ (1 − s1) (1 + β) x + β · v2

= (1 − s1) x + β (1 − s1) x + β · v2

≥ (1 − s1) + β ·max
{ √

(1 − s1) x, v
}2
.

Therefore, restricting x ∈
[
0, (1 + β) x

]
will not change the infimum of program (B.15). Moreover,

s1x − z ≥ 0 ⇒ z ≤ s1x ≤ x,

so restricting (x, z) ∈
[
0, (1 + β) x

]2 will not change the infimum of program (B.15).
Consider the following program

Ψ̂∗ (s1) ≡ sup
x,z

Ψ̂ (x, z; s1) ≡ −
(
(1 − s1) x + β ·max {θ (x, z; s1) , φ (x, z)}2

)
s.t. (x, z) ∈ Γ̂(s1),

(B.17)

where θ is defined by equation (B.16), φ is defined by equation (A.2), and Γ̂ is defined as follows:

Γ̂(s1) ≡
{

(x, z) ∈
[
0, (1 + β) x

]2 : s1x − z ≥ max
a∈A0∪{(δ0,0)}

{
s1EFa

[
y
]
− ca

}}
.

By definition, Ψ̂ :
[
0, (1 + β) x

]2
× [0, 1] → R is a continuous function, and Γ̂ : [0, 1] ⇒

[
0, (1 + β) x

]2 is a
compact-valued and nonempty-valued correspondence. Moreover, the infimum of program (B.15), Û (s1),
is given by −Ψ̂∗ (s1).

Note that for each s1, Γ̂ (s1) defines a half plane intersecting a square, and that the half plane shifts
linearly in s1. Thus, Γ̂ is both upper and lower hemicontinuous. It then follows from Berge’s maximum
theorem that Ψ̂∗ is continuous, and

Γ̂∗ (s1) ≡
{
(x, z) ∈ Γ̂ (s1) : Ψ̂ (x, z; s1) = Ψ̂∗ (s1)

}
is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program
(B.17) exists for all s1, and the supremum can be replaced by maximum.

It follows that the infimum in program (B.15) and therefore the original program (B.5) can both be
replaced by minimum, and the resulting minimum value Û (s1) = −Ψ̂∗ (s1) is continuous in s1. Hence, Û (s1)
achieves a maximum over [0, 1]. This maximum is also the optimal guarantee over all linear contracts. �

Proof of Theorem 2′. According to Lemma A.5′, among all linear first-period contracts, there exists an op-
timal one, call it w∗1. If w1 is any other (nonlinear) first-period contract that outperforms w∗1, then by Lemma
A.4′, there is a linear contract that in turn does at least as well as w1. But this contradicts the fact that w∗1 is
an optimal linear contract. Therefore, w∗1 is optimal among all first-period contracts. �
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Appendix C Optimal First-period Contract

In this appendix, we examine the structure of the optimal linear first-period contract in our dynamic model,
and compare it with the optimal static contract identified by Carroll (2015). This requires an exact calcu-
lation of the overall payoff guarantee from an arbitrary linear first-period contract, which becomes com-
plicated when the principal knows a general set A0 of available actions. In particular, in response to a
linear first-period contract w (y) = s1y, the optimal payoff that agent 1 can obtain from known actions,
maxa∈A0

{
s1EFa[y] − ca

}
, changes with respect to s1 in an intractable manner. This payoff, however, is a key

component of the constraint in the programs that characterize the principal’s overall payoff guarantee. For
this reason, we focus on the case where the principal knows only one action a0 = (F0, c0) available.

We demonstrate that the principal’s second-period payoff guarantee takes a simpler form in the case of
advancing technology (equation (2)). It turns out that the principal’s overall payoff guarantee is also easier
to characterize in this situation. In the proof of Theorem 1, we set up a program (5) that characterizes the
principal’s overall payoff guarantee from any linear first-period contract. We explicitly solve the program
(5) for any first-period share s1, and the resulting overall payoff guarantee U is depicted in Figure 2. From
this calculation, we can show that the optimal first-period share s∗1 exists and is unique. Moreover, in Figure
2, the optimal first-period share is greater than s0 ≡

√
c0/EF0[y], the optimal static share in Carroll (2015).

First-period share, s1

Principal's overall payoff guarantee, U


0 s0s0
2

β  EF0 [y] - c0 2

1

Optimal payoff guarantee

Figure 2: Overall payoff guarantee in the case of advancing technology (s0 = 0.4, β = 0.8).

Proposition C.1 formally establishes this observation and exactly characterizes the optimal first-period
share. It reveals an exploration effect where the optimal first-period share offered to agent 1 is always larger
than the optimal static share s0. Moreover, the exploration effect increases as the principal becomes more
patient (β increases), provided that β < 1. When β > 1, it starts to decrease, and vanishes as β→ ∞.

Proposition C.1. Suppose the principal knows only one available action a0 = (F0, c0), and let s0 ≡√
c0/EF0[y] denote the optimal static share. In the case of advancing technology, the optimal first-period

share s∗1 is unique, and satisfies the following properties:

1. For all β ∈ (0,∞), the optimal first-period share is larger than the optimal static share, i.e., s∗1 > s0.

2. In both limiting cases β→ 0 and β→ ∞, s∗1 approaches s0.
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3. s∗1 is strictly increasing in β if β < 1, and is strictly decreasing if β > 1.

Proof of Proposition C.1. Available upon request. �

The pattern identified by Proposition C.1 is illustrated in Figure 3. It is straightforward to understand

Normalized discount factor, β / (1 + β)

Optimal rst-period share, s1*

0 β  1 β  ∞

s1

s0

Figure 3: The optimal first-period share s∗1 in the case of advancing technology (s0 = 0.4).

the result that the dynamic model converges to the static model as the discount factor β approaches 0. To
get intuition behind the opposite case, that is, when β approaches infinity, the optimal first-period share s∗1
approaches the optimal static share s0 again, note that unlike in standard models where patience automati-
cally leads to the option value of exploration, here the principal is concerned with the worst-case discovery.
In the limiting case β → ∞ where only the second period matters, there is no incentive for her to raise
the first-period share s1 from s0, precisely because the worst-case technology always leaves the principal
without any valuable discovery. The principal is thus essentially indifferent among any first-period contract
in this limiting case, making the opportunity to explore in the first period completely useless to her.

In the case of constant technology, the principal adopts a more complex rule of updating (i.e., com-
patibility). Under all possible parameters choices, we aim to compute the exact solution to the analo-
gous program (A.11), which characterizes the overall payoff guarantee of any linear first-period contract
w1 (y) = s1y. Current results show that, for a range of parameter values (specifically, β not too large), the
resulting worst-case payoff guarantee Û is a bell-shaped curve as depicted in Figure 4. From this figure, the
optimal first-period share appears to be unique, and smaller than the optimal static share s0.

Now we explain why the principal chooses to lower the share offered to agent 1 compared to the optimal
static share in Carroll (2015). Note that this result is different from the previous case of advancing technol-
ogy due to the distinct rule of updating, thus resulting in a different optimal second-period payoff guarantee
(equation (6)). Within the parameter values we tried, the true worst-case technology A is such that, after
offering first-period contract w1 and observing agent 1’s selected action a1, the principal optimally selects
the second response among the four candidates of optimal second-period contracts, namely, a modified w1
with compensation to agent 2. Based on this observation, it won’t be worst-case optimal for the principal
to offer a strictly higher share compared to the optimal static share in the first period, in anticipation of an
even higher share in the subsequent period. Instead, the principal benefits from reducing the share in the
first period to hedge against the risk of increasing the share in the second period.

We hope to finish the subsequent calculations to formally confirm this observation, in order to better
understand the exploration effect in the case of constant technology. In particular, we are interested in
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First-period share, s1

Principal's overall payoff guarantee, U

s0
2 s0

β  EF0 [y] - c0 2

10

Figure 4: Overall payoff guarantee in the case of constant technology (s0 = 0.4, β = 0.8).

whether the optimal first-period share s∗1 approaches the optimal static share s0 again as the discount factor
β approaches infinity.
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