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Abstract

We study a two-period moral hazard problem; there are two agents, with action sets that are unknown
to the principal. The principal contracts with each agent sequentially, and seeks to maximize the worst-
case discounted sum of payoffs, where the worst case is over the possible action sets. The principal
observes the action chosen by the first agent, and then offers a new contract to the second agent based
on this knowledge, thus having the opportunity to explore in the first period. We introduce and compare
three different notions of dynamic worst-case considerations. Within each notion, we define a suitable
rule of updating and characterize the principal’s optimal payoff guarantee. We find that linear contracts

are robustly optimal not only in static settings, but also in dynamic environments with exploration.
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1 Introduction

Moral hazard models, in which a principal designs a contract to incentivize an agent, have been extensively
studied and widely applied. In many canonical moral hazard models, however, optimal contracts require
precise knowledge of the environment: the set of all possible actions together with the (stochastic) mappings
from actions to outcomes. This aspect raises practical concerns, because in reality the principal’s knowledge
is certainly not entirely correct. How should the principal design contracts that have robust guarantees even
if some details are incorrect? The emerging area of robust contract design follows the Wilson Doctrine
(Wilson, 1987), which advocates for realistic approaches that are detail free.

The pioneer work by Carroll (2015) assumes that the principal knows only some of the actions available
to the agent, and evaluates contracts based on their worst-case performance, over the unknown actions the
agent might take. The results show that, very generally, the optimal contract is linear, which provides new
foundations for the common use of linear contracts in practice.

One suspicion, however, about the linear results in Carroll (2015) is how much they hinge on the
principal’s inability to explore the unknown, an opportunity that arises naturally in models with multiple
interactions.! It is not even clear how to model (non-Bayesian) exploration in the robust paradigm. Specifi-
cally, if the principal can observe an agent’s chosen action, then she can gain insights into actions that were
initially unknown but might be subsequently undertaken. Furthermore, based on the agent’s rationality, she
may also exclude certain actions that were not chosen. In such environments, how should the principal
design contracts to best utilize exploration opportunities? Specifically, what contracts respond best to new
knowledge? Are linear contracts still robustly optimal with exploration?

A suitable class of applications of robust models in contract design involves the principal hiring or
consulting specialized agents that surpass her own expertise. This explains the principal’s limited knowledge
about all actions available to the agents and her lack of a prior belief regarding the unknown ones. For
instance, consider an individual hiring gig workers from online platforms. While long-term contracts are
typically not enforceable, she does have the opportunity to interact with a pool of workers. Given that the
workers share similar professional training, the individual’s knowledge about the capability of the pool from
past experience is valuable for improving future interactions. Within this example, the main theoretical
question of this paper is twofold: First, how should the individual structure contracts to best respond to

new knowledge gained from exploration? Second, in anticipation of such opportunities, what contracts are

'One related but distinct criticism of the robust mechanism design literature is that most models are static in construction
but assume commitment. We discuss this issue in the literature section. See also Libgober and Mu (2023) for a corresponding
perspective in the area of informationally robust mechanism design.



optimal for acquiring new knowledge?

In the baseline model of this paper (Section 2), we study a two-period moral hazard problem. There
are two agents, whose action sets are unknown to the principal. The principal contracts with each agent
sequentially to provide incentives. She observes the action chosen by the first agent, and then offers a new
contract to the second agent based on this knowledge, thus having the opportunity to explore in the first
period. The principal and agents are all risk neutral, and payments are constrained by limited liability.

The baseline model assumes that the principal knows only some available actions of the agents, but
other unknown actions may also exist, and the principal does not even have a well-defined prior belief about
these unknown actions. Faced with this nonquantifiable uncertainty, the principal seeks to maximize her
worst-case discounted sum of payoffs, where the worst case is over the possible action sets. Consequently,
it is crucial to articulate what actions the principal considers possible in each period, and to determine how
the principal’s beliefs about unknown actions are updated across periods.

The main result of this paper is that linear contracts are robustly optimal not just in static settings, but
also in dynamic environments with exploration. In order to obtain this conclusion, we introduce and compare
three distinct notions of dynamic worst-case considerations: independent technology, advancing technology
and constant technology. In the first period, the principal believes that the first agent’s action set could be
any set containing the known actions. After the principal offers a contract to the first agent and observes
his response, a rule of updating must be specified to determine the actions the principal considers possible
in the second period, and these three notions precisely vary based on the principal’s updated beliefs about
the subsequent action sets. To better understand the results and analysis, it is helpful to imagine there is an
adversarial “nature” that selects the set of actions for the corresponding agent in each period to minimize the
principal’s payoff, and the three notions differ in the restrictions imposed on nature’s available moves across
periods. Within each notion, we define a suitable rule of updating and characterize the principal’s optimal
payoft guarantee, thereby concluding that linear contracts are robustly optimal.

We begin by considering the case of independent technology, where the action sets of the two agents
are not related; in other words, nature can select the action set for each agent independently. In this case,
the choices made by the first agent do not provide the principal with information about what actions the
second agent can take. Therefore, the learning aspect is essentially nullified, and the principal’s overall
payoff guarantee is maximized by adopting a straightforward approach: offering the optimal static contract
identified by Carroll (2015) in both periods. Characterizing the case of independent technology creates a
building block that enables us to further analyze the implications of dynamic environments with different

levels of interdependence between agents’ actions.



Next, we analyze the first restriction that facilitates meaningful exploration: the case of advancing
technology (Section 3). In this case, the action set may expand between periods, but cannot shrink. In other
words, nature can only introduce new actions across periods, but is not allowed to delete old ones. The main
result for the case of advancing technology is that linear contracts are robustly optimal period-by-period
(Theorem 1). Toward this conclusion, we solve the principal’s dynamic problem via backward induction.
After the principal offers some first-period contract and observes the action chosen by the first agent, she
learns that this action exists and may be taken again by the second agent. Moreover, this represents the
best conjecture the principal can make in the second period, given that nature may introduce new actions
that were not present in the first period. Therefore, the principal’s second-period problem simplifies to a
single-period problem in Carroll (2015) with respect to the updated knowledge of the set of actions, and
thus optimal second-period contracts are linear.

Going back to the first period, when the principal chooses a first-period contract to maximize her overall
payoff guarantee, we establish the optimality of a linear first-period contract. The proof of this conclusion
boils down to two steps. The first step shows that any nonlinear first-period contract can be improved into
another linear contract, thereby (weakly) increasing the overall payoft guarantee (Lemma 1). The second
step further shows that the maximum of the principal’s first-period problem exists within the class of linear
first-period contracts (Lemma 2). Combining these two steps, we show that, even with the opportunity to
use any first-period contract for exploration, no other more complicated form of contracts provides a better
payoft guarantee to the principal than linear ones.

Moving on to an alternative notion with more restrictions, the case of constant technology, we assume
both agents share the same set of actions unknown to the principal (Section 4). In other words, nature can
neither introduce new actions across periods nor delete old ones. The main result for the case of constant
technology is Theorem 2, which shows that linear contracts are robustly optimal in both periods, although
not period-by-period. Specifically, the second-period analysis shows that, following nonlinear first-period
contracts, optimal second-period contracts may also be nonlinear in some cases. Nonetheless, upon back-
ward induction to the first period, it is robustly optimal to use linear first-period contracts, thereby ensuring
optimal second-period contracts are also linear on the path.

The reason for obtaining different results compared to the previous case of advancing technology is a
more subtle rule of updating. For simplicity of exposition, we assume the principal only knows one action
available to the agents.” After observing the action chosen by the first agent, she believes the action set could

be any set that (i) contains the observed action in addition to the initially known action, and (ii) does not

2In Appendix B, we show that analogous results hold if the principal knows a general set of know actions.



contain any action strictly better than the observed action under the first-period contract. We refer to such
actions sets as compatible (Definition 1). Requirement (i) indicates that the principal learns the existence of
the chosen action, and requirement (ii) captures the additional inference she can draw from the rationality
of the first agent.

The primary distinction from the previous notion of advancing technology lies in the analysis of the
second period. This is not a direct adaptation of the single-period problem in Carroll (2015), precisely
because the principal draws additional inferences from the rationality of the first agent, which excludes
certain actions. Therefore, the analysis of the second period in the case of constant technology is a significant
innovation point of this paper from a technical perspective. We fully characterize the principal’s optimal
second-period payoff guarantee, and identify the contract that attains it in various cases. The analysis reveals
four ways the principal may respond to the knowledge gained from observing the chosen action (Lemma
3). Specifically, the principal’s optimal guarantee is achieved by offering the best among four contracts: (i)
the first-period contract again, (ii) a modified version of the first-period contract with compensation for the
second agent, and (iii) & (iv) two linear contracts that correspond to the optimal static contracts in Carroll
(2015). As long as the first-period contract is nonlinear, and the observed action is such that one of the first
two contracts is optimal, then the optimal guarantee is achieved by nonlinear contracts.

As concluding remarks of the paper, we discuss further results. First, we analyze the situation where
the principal knows a set of actions available to the agents in the case of constant technology (Appendix
B). We characterize the principal’s optimal second-period payoff guarantee in closed form, and identify the
contract that attains it in various cases (Lemma 3”). In addition, as long as the set of known actions satisfies
a condition called lower bound on marginal cost (Definition B.1), linear contracts still outperform nonlinear
ones (Theorem 2”). Next, we examine the structure of the optimal linear first-period contract in our dynamic

model (Appendix C), and compare it with the optimal static contract identified by Carroll (2015).

Related Literature Foundations for linear incentive contracts have received extensive research attention.
The seminal work of Holmstrom and Milgrom (1987) considers a dynamic framework where output is pro-
duced gradually over time, the agent is aware of his own progress, and the principal pays the agent at the
end. Although the principal is allowed to use the entire history of output to determine the payment, the
optimal contract depends only on the number of realizations of each output level, and is linear in these
counts. In a continuous time version of their problem where the agent controls the drift of a multidimen-

sional Brownian motion, the optimal contract can be expressed as a linear function that depends only on



the endpoint.> However, the stationary structure of their model is critical for this linearity result,* because
linear contracts provide the agent with constant incentives to move forward independent of her past perfor-
mance. In our model, the principal offers multiple contracts during the process, and exploration makes the
principal’s problem inherently non-stationary. Therefore, our paper considers a different form of foundation
for linear contracts. Furthermore, Diamond (1998) and Barron, Georgiadis, and Swinkels (2020) provide
arguments for linear contracts using static Bayesian frameworks.

More recently, pioneered by Carroll (2015), this issue has been investigated by a wave of research using
robust models of contract design, which demands contract performance to be robust to limited knowledge of
the environment. Carroll (2019) provides a comprehensive review of this approach, as well as an overview
of the evolving field of robust mechanism design that adopts many other notions of robustness. Most work
in robust contract design, however, analyzes static or one-shot models, which precludes the opportunity for
designers to better understand parts of the environment they do not know. While starting with nonquan-
tifiable uncertainty, designers may still be able to gradually gain a better understanding of the environment
in which they repeatedly engage through exploration. Our dynamic model provides the principal with the
opportunity to explore the unknown, in order to understand how the principal should design contracts that
are robustly optimal given this exploration opportunity.

As stated by Carroll (2019), “another challenge is that trying to write dynamic models with non-
Bayesian decision makers leads to well-known problems of dynamic inconsistency, except in special cases
(e.g., Epstein and Schneider (2003)). This may be one reason why there has been relatively little work to
date on robust mechanism design in dynamic settings.” Knowing the difficulty, we carefully specify the
principal’s “beliefs” in the second period of our two-period model to follow a recursive structure analogous
to Epstein and Schneider (2003), in order to avoid dynamic inconsistency issues.

This paper is relevant to the recent research that examines robust contracting in different organizational
environments. Specifically, Dai and Toikka (2022) analyze moral hazard in teams, Marku, Ocampo, and
Tondji (Forthcoming) study a common agency model, and Carroll and Bolte (2023) investigate a model
with double moral hazard. Walton and Carroll (2022) provide a general framework that goes beyond simple
bilateral relationships and allows for rich internal organizational structures. Our model analyzes a simple
contracting environment, and aims to capture the main issue in terms of exploration. In particular, due to

exploration, the analysis of our dynamic model cannot be directly derived using the conclusions in Walton

3Following Holmstrom and Milgrom (1987), Sung (1995) further shows that the optimal contract can still be linear when the
agent controls the variance; Hellwig and Schmidt (2002) provide discrete time approximations of the continuous time model.
“*For example, Schittler and Sung (1993) show that a time-dependent technology makes the optimal contract nonlinear.



and Carroll (2022).°

The revealed preference reasoning in this paper is related to the recent work by Burkett and Rosenthal
(2023) and Antic and Georgiadis (2023), who consider a static robust contracting problem with revealed
preference data. In Burkett and Rosenthal (2023) and Antic and Georgiadis (2023), the principal’s only
knowledge is the agent’s best responses to a finite number of given contracts, and she seeks to maximize
her worst-case payoffs over all action sets that can rationalize the data. In the second period of our model,
the principal’s additional knowledge is exactly the first agent’s best response to the first-period contract.
Therefore, our second-period characterization contains a compensation component similar to their results.
However, our model differs in that the principal also initially knows certain available action(s), so the struc-
ture of the optimal contracts is not exactly the same.® More importantly, in their settings, the principal’s
revealed preference data are exogenously provided, whereas our model places a significant emphasis on
endogenizing this aspect through the optimal exploration design in the first period.

From a broader perspective, Marku, Ocampo, and Tondji (Forthcoming) and Carroll and Bolte (2023)
are in a similar spirit to our work on how the designers’ robust objectives interact with their policy choices.
In Marku, Ocampo, and Tondji (Forthcoming), several principals compete to contract with a common agent.
In Carroll and Bolte (2023), the principal faces the choice of supplying input in the process of contracting
with an agent. However, the maxmin objective in both studies is applied only once, whereas in our model
it needs to be used in each of the two periods. In the area of informationally robust mechanism design,
Libgober and Mu (2023) study durable good monopoly without commitment, and introduce the notion of
dynamically-consistent worst-case information structure.

A number of other recent papers considering static models of robust contracts are related to our work,
because the principal is aware of some additional characteristics of the unknown actions in addition to the
concern that they may exist. As with Kambhampati (2024), who studies performance evaluation of agents,
although we do not place any restrictions on the possible action sets of an individual agent, we assume that
the two agents have identical action sets. However, our assumption is for a different reason, in order to make
the principal’s observations of chosen actions valuable. In addition, Antic (2021) assumes a lower bound
on the productivity of all unknown actions of the principal. Furthermore, in Diitting, Roughgarden, and

Talgam-Cohen (2020), the principal only knows the first moment of the distribution over output induced by

SWe articulate the specific differences between our dynamic model and the general static framework in Walton and Carroll
(2022) in Subsection 4.2.

% Another reason for similar but not identical results is due to the assumption on the observed actions: Burkett and Rosenthal
(2023) and Antic and Georgiadis (2023) assume that the distribution of output (but not the effort cost) associated with the best
response is observed. Instead, we assume that both the distribution and the cost are observed, as we believe this is more consistent
with the assumption on the principal’s initial knowledge.



each possible action, but not the full distribution.

The rest of the paper is organized as follows. Section 2 lays out the baseline model, and analyzes
the case of independent technology. The first main part, Section 3, analyzes the case of advancing technol-
ogy, and show that linear contracts are robustly optimal period-by-period. The second main part, Section
4, then analyzes the case of constant technology and shows that, although optimal second-period contracts
may be nonlinear in some cases following nonlinear first-period contracts, linear first-period contracts max-
imize the overall payoff guarantee, ensuring that optimal second-period contracts remain linear on the path.
Section 5 concludes. Appendix A contains the proofs of all results in the main text. Appendices B and C

present further results.

2 Model

2.1 Notation

We denote by A (X) the set of (Borel) probability measures on a set X C R, equipped with the weak topology.

For x € X, we write ¢, for the degenerate distribution that puts probability one on x.

2.2 Setup

The baseline model is a two-period moral hazard problem, consisting of a principal (she) and two agents
(he). The principal contracts with each agent sequentially to provide incentives, and the reservation payoft
of the agents is zero. All parties are assumed to be risk neutral. The principal’s discount factor is 8 € (0, ).

In each period (¢ = 1,2), agent ¢ takes a costly action that results in a stochastic output. The realized
output y belongs to a set Y of possible output values. Assume Y is a compact subset of R, either finite or
infinite, and normalize the lowest possible output to zero: min (Y) = 0.

An action of the agents, a, is a modeled as a pair a = (F,¢) € A(Y) X R*, with the interpretation that if
an agent chooses action a, he incurs cost ¢, and output is drawn y ~ F. We equip A (Y) x R* with the natural
product topology.

A techonology is a (nonempty and) compact set of possible actions. Agent ¢ has technology A, C
A(Y) x R*, which only they know but the principal does not. The principal general compact set Ay of
available actions. To ensure that the principal may benefit from contracting with the agents, assume that

there exists (F, ¢) € Ag such that Ex [y] — ¢ > 0.’

"Note that it is necessary for the principal to know at least one action that guarantees a strictly positive surplus, because otherwise



To capture the idea of exploration, assume that the principal observes the action chosen by agent 1,
and then offers a new contract to agent 2 based on this knowledge. The chosen action itself, however, is not
contractible.® Payments to the agents can only depend on the realized output, y.

Assume that the agents have limited liability, so the payment to them can never be strictly negative. A
contract is a continuous’ function w : ¥ — R* such that w (0) = 0. One foundation for w (0) = 0 is two-
sided limited liability,"® which also requires that the contracts never pay more than output: 0 < w(y) <y
for all values of y. We do not explicitly impose two-sided limited liability, but only view it as a possible
explanation for w (0) = 0.!!

The timing within each period ¢ is summarized as follows:
1. The principal offers a contract w;.
2. Agent t chooses a; = (Fy, ¢;) € Ay, or quits the relationship (zero payoff for both parties).
3. Output y, ~ F; is realized.
4. Payoffs y, — w; (y;) to the principal and w; (y;) — ¢, to agent .

The principal’s objective is to maximize her worst-case expected discounted sum of payoffs over all
possible technologies. Therefore, it is crucial to articulate what actions the principal considers possible in
each period, and to determine how the principal’s beliefs about unknown actions are updated across periods.
Addressing this critical gap in the existing literature, we introduce and compare three distinct notions of
dynamic worst-case considerations: (i) independent technology A1 L A,, (ii) advancing technology A\ C A,

and (iii) constant technology A1 = A,.

it is always possible that the agents are not able to produce anything of value.

81t is a strong assumption that the chosen action becomes observable to the principal, especially since F represents a distribution.
One interpretation is that each period summarizes (the “average” state of) a horizon for which the contract needs to remain fixed,
while the agent is repeatedly taking action. During this process, the principal can keep observing him and figure out what action
must be taken, in particular what F and c are. However, knowing that the action exists is still not the same as being able to write it
into a contract. The action itself may be too complex to be accurately described in contract terms, or its inclusion into the contract
may be directly prohibited by law.

°The continuity assumption is made only to ensure the existence of best responses of the agents. This assumption becomes
vacuous if Y is a finite set, and can also be weakened to upper semicontinuity with additional verifications. See also Carroll (2015,
footnote 1), Walton and Carroll (2022, footnote 3), Carroll and Bolte (2023, footnote 1).

10See also Burkett and Rosenthal (2023, Definition 6).

" Another foundation for w (0) = 0 is the standard free disposal condition, plus a lowest support condition on the agents’ possible
actions. We say a technology A satisfies the lowest support condition if, for all (F,c) € A, the lowest output O is in the support
of F. Under these two conditions, the principal will only offer contracts with w (y) > w (0) for all y, because otherwise the agent
may discard output to receive more payments. Given limited liability, it is then without loss of generality to focus on contracts with
w (0) = 0, since a constant shift does not affect the agent’s incentives, but only increases the principal’s payoff. That is, if w (0) > 0,
let w(y) = w(y) — w(0) > 0 be another valid contract. the agent’s chosen action does not change if the principal instead offers w,
but this increases the principal’s payoff by w (0).



In the following sections, we define a suitable rule of updating within each notion and characterize
the principal’s optimal payoft guarantee. The conclusion is that linear contracts are robustly optimal in all
three notions. To better understand the connections and distinctions among the three notions, it is helpful
to imagine there is an adversarial “nature” that selects the technology for the corresponding agent in each
period to minimize the principal’s payoff. The three notions differ in the restrictions imposed on the moves

available to nature across periods.

2.3 Independent Technology

We begin by considering the case of independent technology A; L Aj, where the technology of the two
agents A| and A, are not related; in other words, nature has the flexibility to select the technology for each
agent independently. In this case, the choice made by agent 1 does not yield any information for the principal
regarding the potential actions agent 2 might take. Therefore, the learning aspect is essentially nullified, and
the principal’s overall payoff guarantee is maximized by adopting a straightforward approach: offering the
optimal static contract identified by Carroll (2015) in both periods.

We briefly recap the analysis in Carroll (2015), as it lays the foundation for subsequent analyses. It
is relatively straightforward to describe the behavior of the agents. In each period ¢, given contract w and
technology A, agent ¢ chooses an action (F,c) € A to maximize his expected utility, so the best response

correspondence is given by

BR (W|A) = argmax {Ep [w (y)] — ¢}.
(Fo)eA

The principal’s single-period expected payoff under technology A is denoted by

V(wlA) = E - ,
(w]A) o Fly—w®)]

where we assume ties are broken in the principal’s favor if the agent is indifferent among several actions.'?

The principal’s objective is to choose a contract w to maximize her worst-case expected payoff

Viw) = Aig{o V(wlA).

12This tie-breaking assumption ensures the existence of optimal contracts, and minimizes the departure from standard models.
Other tie-breaking rules will lead to essentially the same results, but may introduce technical complications. For example, the
principal’s optimal payoff guarantee may be approached, but not achieved, by linear contracts. See also Carroll (2015, Section D),
Dai and Toikka (2022, footnote 4), Carroll and Bolte (2023).
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The key result of Carroll (2015) is that the principal’s optimal single-period payoff guarantee, max,, V(w),
is attained by a linear contract w (y) = sy. Specifically, the solution to the principal’s static problem can be

summarized as follows:
1. Maximize /Er[y] — /c over (F,c) € A, with solution a* = (F*, ¢*).
2. Set s* = y/c*/Ep- [y] as the share, and offer linear contract w (y) = s*y.

2
The resulting optimal guarantee is equal to (\/Ep* [y] - \/c_*) . Consequantly, in the case of independent

technology, the principal’s overall payoff guarantee is maximized by offering wi(y) = wa(y) = s*y, and is

equal to (1 + ) (VEF D1 - V).

3 Advancing Technology

The case of independent technology might be overly pessimistic, as it completely prevents the principal from
learning about the technology through agent 1’s actions. Essentially, with no restriction on nature’s moves,
the principal is hindered from learning through exploration. In this section, we analyze the first restriction
that facilitates meaningful exploration: the case of advancing technology Ay € A,. Here, the technology
may advance between periods, but cannot downgrade. In other words, nature can only introduce new actions
across periods, but is not allowed to delete old ones.

The main result for the case of advancing technology is Theorem 1, which shows that linear contracts
are robustly optimal period-by-period. That is, linear contracts are also optimal in terms of utilizing the

exploration opportunity, making them even more robust.

3.1 Rule of Updating and Second Period Analysis

As in the previous case of independent technology, the principal maximizes her worst-case expected dis-
counted sum of payoffs over all possible technologies. In the first period, she believes that agent 1’s tech-
nology A could be any technology such that A; 2 A. Taking into account possible technological advances

after the first period, the principal’s rule of updating is defined as follows:

After the principal offers contract w; and observes the action a; chosen by agent 1, she

ey
believes that agent 2’s technology A; could be any technology such that Ay 2 AgU{ay}.

That is, the principal learns that action a; exists in A; (in addition to the initially known set Ap), and believes

that agent 2 may also choose this action again (since A; € A;). Moreover, this represents the best conjecture

11



the principal can make in the second period, given that nature may introduce new actions that were not
present in the first period.

We solve the principal’s dynamic problem via backward induction. With the update rule (1), the prin-
cipal’s second-period problem simplifies to a single-period problem in Carroll (2015). Specifically, in the

second period, the principal chooses a second-period contract w, to maximize her worst-case payoff

Vo (walay) = inf }V(wzlAz).

ArDA0U{ay

Applying Carroll (2015)’s result to the updated knowledge on technology, we conclude that the optimal
second-period contract is linear, and the resulting optimal second-period payoff guarantee is V; (a1) =
® (a;)?, where

®(a)) = max }{\/Epﬂ[y]— Vea.- 2)

acAgU{a;

Note, here and throughout the analysis below, we denote the output distribution and cost associated with any

generic action a by F, and c,, respectively.

3.2 First Period Analysis

Going back to the first period, if the principal offers the first-period contract w; and agent 1 chooses action
a; = (F1,c1), her interim payoff guarantee, defined as her payoff in the first period plus the discounted

optimal second-period payoff guarantee, is given by
Uwila) =Ep, [y—-wi W] +-V; (a1).

Since she believes that agent 1’s true technology A; could be any technology such that A; 2 Ag, her overall
payoff guarantee, defined as the worst-case interim payoff guarantee over all possible technologies Ay, is
given by

U(w) = inf{ max U(w1|a1)},
A12A¢ |a1€eBR(w1lA1)

where, once again, we assume ties are broken in her favor.
The principal’s first-period problem is to choose a first-period contract w; to maximize her overall
payoff guarantee U (w;). We are now ready to state the main result for this section, Theorem 1, which

shows the maximum exists and is achieved by a linear contract.

12



Theorem 1. In the case of advancing technology, there exists a linear first-period contract wy that maximizes

the principal’s overall payoff guarantee U (wy).

Even with the opportunity to use the first-period contract as a means of exploration, no other more
complicated form of contracts provides the principal with a better payoff guarantee than linear ones.

The proof of Theorem 1 boils down to two steps. The first step, Lemma 1, shows that any nonlinear
first-period contract is outperformed by some linear one. The second step, Lemma 2, further shows that the

maximum of the principal’s first-period problem exists within the class of linear first-period contracts.

3.2.1 Proof Step 1: Improving Nonlinear Contracts

We start from any arbitrary first-period contract wy, and construct another linear contract w; that provides
the principal with a weakly higher overall payoff guarantee. Thus, any nonlinear contract can be improved
by a linear one.

For any first-period contract wy, let (Fo, cg) € Ag be agent 1’s best response when his technology is A

is just the initially known Ay, and let w; denote the following linear contract:

_ EFo [Wl (Y)]

w1 (y) =s1y with s1 = > 0. 3)

EF() [y] B

The procedure of constructing the linear Wy is depicted in Figure 1. The solid curve represents first-period

Payment to agent, w(y)

Ep, i1 |~ - fm = .

’
’
151

Realized output, y

Figure 1: The linear contract w; constructed from wj.

contract wy, which may be nonlinear and non-monotonic. Consider the point (Eg, [y],Er, [w1 ()]), whose
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coordinates are the expected output and the expected payment to agent 1 if he takes action ag = (Fo, o).
This point must lie within the convex hull of the curve wy, represented by the shaded area in the figure.
The constructed linear contract Wy is exactly the dashed line connecting the origin and this point, with a
corresponding slope denoted by s;.

Note that the linear contract w; is chosen such that if agent 1 takes the action ag, his payoff will be

exactly equal under w; as under wy:

Er, P01 0] = co = s1EF, [y] = co = Er, [w1 ()] = co.

We will show that the principal’s overall payoff guarantee is at least as high under W, as it is under wy; that

is, U (W) > U (w))."3

Lemma 1. Let wy be any first-period contract. The linear contract W, defined by equation (3) satisfies

UGovr) 2 U (wy).
Proof. All proofs of the results in the main text are in Appendix A. O

Suppose the principal offers the linear first-period contract Wy, and agent 1 chooses action a; from
the true technology A;. We need to show that the principal’s interim payoff guarantee, U (Wla;), is at least
U (w1). If there exists another action a7, which may be taken by agent 1 under w; and some other technology

A7, such that
U (Wilar) 2 U (wia)) (4)

holds, then U (Wilay) > U (w1 ’a;) > U (w}), and thus the desired conclusion is established. The proof of
Lemma 1 explicitly constructs such an alternative action a} for each possible a;.

Specifically, the principal’s interim payoft guarantee consists of two parts, her payoff in the first period,
plus the discounted optimal second-period payoff guarantee. The characterization of the second part in the
previous subsection is crucial for the construction of a}, enabling the desired inequality (4) to hold period
by period: under (W1la), the principal’s payoff in the first period and her guarantee in the second period are
both higher than under (W] |a’1).

By establishing Lemma 1, we have shown that any nonlinear first-period contract can be improved

by a linear one. To finalize the proof of Theorem 1, it suffices to show that, within the class of linear

13Unlike the main text of Carroll (2015), which uses linear relations between the principal’s and agent’s payoffs to characterize
the payoff guarantee of any contract, this is an adaptation of the alternative approach suggested by Lucas Maestri in Carroll (2015,
Appendix C) to the two-period model.
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contracts, the maximum of U (w1) exists. We will set up a program that characterizes the principal’s overall
payoff guarantee of an arbitrary linear first-period contract, and prove the existence of maximum through its

continuity in the first-period share.

3.2.2 Proof Step 2: Payoff Guarantee of a Linear Contract

To conclude the proof of Theorem 1, we need to establish the following Lemma 2.
Lemma 2. Within the class of linear first-period contracts, there exists an optimal one for the principal.

The proof of Lemma 2 requires characterizing the overall payoff guarantee of an arbitrary linear first-
period contract, which is the main focus here.

Assume the principal offers a linear first-period contract wi(y) = s;y with s; € [0, 1], and agent 1
chooses a; = (F1, cy) inresponse. The principal’s optimal second-period payoff guarantee V; (a;) =0 (al)z,

with @ defined by equation (2). Thus, her interim payoff guarantee is

Uwilar) = B, [y = wi)] + 8- V5 (a1) = (1 = s)) Ep, [y] + 8- @ (a1)*.

The worst-case overall payoff guarantee minimizes the above expression over all a; that agent 1 may choose

under some technology A;. Note that agent 1 prefers action a; over all known actions a € Ay if and only if

Er, [wi] — 1) = Er, [WwiW] - ca) = ($1Er, [y] — 1) = (s1Br,[y] = ¢c4) 2 0,  Va € A.

Moreover, agent 1 obtains at least his reservation payoff of zero, which can also be viewed as his payoff
from the null action (dg, 0) that produces zero output at zero cost. Hence, the following program yields a

lower bound on the principal’s overall payoff guarantee

inf (1= s)Ep, [y] + - @ (F1.c1)’
)
st (siBpyl =) = (Br, Y] = ca) 20, Va € Ag U {(60,0)},

because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by
program (5).

Conversely, for any feasible a; = (F1, 1) in program (5), agent 1 would take action a; in response to
wi when his technology A| = Ag U {a1}. The worst case over all such technologies leaves the principal with

exactly her interim payoff guarantee, U (wila;) = (1 — 51) Ep, [y]+8-® (a1)*. Thus, if a solution to program
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(5) exists (i.e., if infimum may be replaced by minimum), then the principal’s payoft guarantee cannot be
strictly higher than its minimum value.

The above analysis shows that the worst-case overall payoff guarantee of any linear first-period contract
wi (y) = 51y is exactly characterized by program (5). In the proof of Lemma 2 in Appendix A.1, we formally
show the existence of minimum in this program, and its continuity in the first-period share s;. We first
reformulate program (5) as an equivalent maximization problem with continuous objective function and
compact feasible region, and then invoke Berge’s maximum theorem to prove the required existence and
continuity. Since the overall payoff guarantee of a linear first-period contract w; (y) = s1y is continuous in
the first-period share sy, it achieves a maximum. This maximum is also the optimal guarantee over all linear
contracts.

Specifically, under a linear first-period contract wy, the expression of VJ (a1) = @ (a; )? given by equa-
tion (2) gets simplified, thus showing that both the objective and the constraint of program (5) depend on the
choice variables (F, c1) only through the value of (Ef, [y], c1), and are continuous. To complete the proof,
we only need to show that the value of (Er, [y],c1) can be restricted to a compact region without affecting

the infimum value of program (5), and that region changes in a continuous'#

manner when the first period
share s changes.
Combining Lemmas 1 and 2, we prove the main result of this section, Theorem 1, which establishes

the optimality of a linear first-period contract.

4 Constant Technology

In the previous section, we have focused on the case of advancing technology (A; € A») and show that linear
contracts are robustly optimal period-by-period in that notion of dynamic worst-case consideration. This
section analyzes an alternative notion with more restrictions: the case of constant technology A = A, = A.
Here, the two agents have the same action set unknown to the principal. In other words, nature can neither
introduce new actions across periods nor delete old ones.

For simplicity of exposition, assume the principal knows only one action ag = (Fo, cg) € A available to
the agents, with Er,[y] — co > 0. In Appendix B, we show that analogous results hold if the principal knows
a general set of know actions Ag as in the baseline model.

The main result for the case of constant technology is Theorem 2, which shows that linear contracts

are robustly optimal in both periods, although not period-by-period. Specifically, second period analysis

!“In the language of correspondences, both upper and lower hemicontinuous.

16



(Subsection 4.2) shows that, following nonlinear first-period contracts, optimal second-period contracts may
also be nonlinear in some cases. Nonetheless, upon backward induction to the first period (Subsection 4.3),
it is robustly optimal to use linear first-period contracts, so optimal second-period contracts are also linear on
the path. The reason for obtaining different results compared to the previous case of advancing technology

is due to a different and more subtle rule of updating, which we refer to as compatibility (Definition 1).

4.1 Rule of Updating: Compatibility

As in the previous two cases, the principal maximizes her worst-case expected discounted sum of payoffs
over all possible technologies. In the first period, she only knows the action ag, and believes that the true
technology A could be any technology such that A 5 ag. After the principal offers contract w; and observes
the action a; chosen by agent 1, a rule of updating needs to be specified to determine the technologies that
the principal considers possible. We say those possible technologies compatible with (w1, a;), formally

defined as follows.!?

Definition 1 (Compatible). Given wi and a; = (F1,c1), a technology A is compatible with (wy,ay) if
1. AD {ao,al}.
2. Er w1 )] —c <Ep, [wi 3] - c1 forall (F,c) € A.

Roughly speaking, a technology A is compatible with (wj,a;) if it contains a; (in addition to ap),
and does not contain any action strictly better than a; under w;. The first requirement in Definition 1
indicates that the principal learns that action @; exists (in addition to the initially known ag), and believes
that agent 2 may also take this action again. The second requirement in Definition 1 captures the additional
inference she can draw from agent 1’s rationality in this case of constant technology: the true technology
A cannot contain any action (F, ¢) that leads to a strictly higher payoff for agent 1, i.e., it is impossible that
Er[wi W] - ¢ > Er, [wi O] - c1.

The principal’s dynamic problem is again solved via backward induction. In the second period, since
the principal believes that A could be any technology compatible with (wy, a;), her problem is to choose a

second-period contract w, to maximize her worst-case payoft:

Vo (walwr,ar) = inf V (walA).

A compatible with (wy,a1)

5This is an analogue of consistency in solution concepts like perfect Bayesian equilibrium.
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Note that this is not a direct adaptation of the single-period problem in Carroll (2015) (where A could be any
technology containing {ag, a;}), precisely because of her additional inference from agent 1’s rationality in
the definition of compatibility, which rules out the possibility that certain actions exist in A. In Subsection
4.2, we characterize the principal’s optimal second-period payoft guarantee, V; (wy,a1), showing that this
distinction matters. The maximum always exists, as we identify the contract that attains it; however, it may
be achieved by a nonlinear w; if the corresponding w is nonlinear.

Going back to the first period, if the principal offers first-period contract w; and the true technology A

is such that agent 1 chooses action a; = (F1, c), her interim payoff guarantee is given by

Uwila) = Ep, [y —wi W]+ 8- V; wi,ay).

Since she believes that the true technology A could be any technology such that A > agp, her overall payoft
guarantee is given by

U(wl) = inf { max 0(w1|a1)},
ABa() aleBR(wllA)

where again we assume ties are broken in her favor.
The principal’s first-period problem is to choose a first-period contract w; to maximize her overall

payoff guarantee. In Subsection 4.3, we show the maximum exists and is achieved by a linear contract.

4.2 Second Period Analysis

We begin our analysis with the second period of the dynamic relationship, where the principal has offered
some first-period contract wi and observed agent 1’s selected action a;. We fully characterize the principal’s
optimal second-period payoft guarantee, V; (w1,a1), and identify the contract that attains it in various cases.
The analysis reveals four ways the principal may respond to the knowledge gained from observing a;, and
in particular shows that if w; is nonlinear, then the optimal second-period payoft guarantee may be achieved
by a nonlinear wy.

The main result for the second period analysis is Lemma 3, which shows that V; (w1, ay) is achieved
by offering the best among four contracts: (i) the first-period contract w; again, (ii) a modified w; with
compensation for agent 2, and (iii) & (iv) two linear contracts that correspond to the optimal static contracts
in Carroll (2015). As long as the first-period contract wy is nonlinear, and the observed action a; is such that
one of the first two contracts is optimal, then V; (wy,ay) is achieved by nonlinear contracts.

Lemma 3 reveals that the analysis in this section is not a direct adaptation of the single-period problem

in Carroll (2015), since optimal contracts may not be linear. This difference is precisely due to the second
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requirement of compatibility, where the principal draws additional inferences from the rationality of agent 1,
excluding certain actions. Note that the analysis is also not covered by the recent work of Walton and Carroll
(2022), which establishes a general static framework that allows for rich organizational structures, and
identifies two properties of the counterparty’s possible responses which jointly imply that a linear contract
solves the principal’s single-period maxmin problem. Specifically, their Richness property requires that the
set of possible responses to a given contract be sufficiently and unboundedly broad. The Richness property
is violated in the case of constant technology exactly because of the principal’s exploration and inference in
the first period, since the true technology cannot contain any action that is strictly better for agent 1 than the
observed action under the first-period contract.'®

Suppose that in the first period the principal offers contract w; and observes agent 1’s action a; =
(F1,c1). She learns that the true technology A is compatible with (w1, a1); that is, it contains @ and a;, and
does not contain any action strictly better than a; for agent 1 under w;.

In the second period, if she offers the same contract w, = wy, then she knows that agent 2 will choose
a; again because the two agents have the same technology. This exactly repeats her first-period payoft
Ef, [y = wi (y)] in the second period. Part 1 of Lemma 3 below shows that, in some cases, doing so is
already optimal for the principal, which means that an optimal second-period contract may be nonlinear
following nonlinear first-period contracts.

Offering the same contract again is only one response of the principal to the knowledge gained by
observing a;, and there are plenty of other possible responses. For example, if the initially known action
ap may lead to a higher payoff for the principal (i.e., Er, [y — wi ()] > Er, [y — w1 (»)]), then it might be
tempting for the principal to try to obtain the payoff Er, [y — w ()] instead. However, achieving this payoff
requires the principal to use w; to induce action ap, and this would violate agent 2’s incentive constraint.
Indeed, in the first period, the chosen action a; provides agent 1 with a (weakly) higher payoff compared to
the known action ag, and this relationship gets transferred to the second period because both agents have the

same technology. This gives rise to the following notion of the incentive gap.

Definition 2 (Incentive gap). Given wy and a; = (F1, c1), the incentive gap, g (w1, ay), denotes the difference

!6The other property in Walton and Carroll (2022), Responsiveness, indicates that the counterparty’s behavior is responsive
to the incentive provided by expected payment, and allows comparison of the principal’s payoftf guarantees from two different
contracts. The Responsiveness property is satisfied in our model. As a converse result, Walton and Carroll (2022) also show that
Responsiveness is necessary for linearity under a strengthened version of Richness. This result is in parallel with our analysis, since
it is Richness that is not satisfied in our model.
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in agent 1’s payoff between choosing a, and ag. Formally,

gwi,ar) = (Er, [w1 )] = c1) = (Er, [w1 ()] = co) .

If the principal wants to induce action @y using a contract “similar to” wj, then agent 2 needs to
be compensated for not choosing a;, and the amount of compensation increases with the incentive gap
g (wy,ay). Part 2 of Lemma 3 shows that the incentive gap sometimes becomes a real cost. Specifically, if

Eg, [y —wi1(y)] > g (w1, ay), then the principal can offer to agent 2 a modified version of w; with compensa-
2

tion in order to guarantee that her payoff in the second period is at least ( \/EFO [y-wi (] - \/g (wq, al))
Moreover, the proof of Lemma 3 shows that this is the optimal payoff guarantee using a modified version
of w;. Note that if the incentive gap is small, this value becomes close to Er, [y — wi(y)], and may be better
for the principal than simply offering w, = wy again.

After observing ay, the principal learns that the true technology A must contain {ag, a;}. If the principal

ignores the second requirement of compatibility (Definition 1) and applies the single-period problem in Car-

2
roll (2015), her optimal guarantee would be equal to (max { VEF, Y] = vfco, VEF, [y] = Ver }) , achieved by
offering the better one of the two linear contracts, wy (y) = s2y with 52 = +/co/EF, [y] or s2 = ~Jc1/EF, [y].

With the additional inference in place, the guarantee from this procedure can only increase. Parts 3 and
4 of Lemma 3 show that, when this payoff guarantee is larger than the previous two cases (w; again, or a
modified w; with compensation), it is optimal for the principal to offer the better of the two linear contracts,
and doing so exactly attains this payoff guarantee.

We are now ready to present the main result of this subsection, Lemma 3, which establishes the opti-
mality of the aforementioned contracts. The principal’s optimal second-period payoft guarantee is achieved
by offering the best among the four contracts described above: w; again, modified w; with compensation,

and the two linear contracts.

Lemma 3. Suppose the principal offers first-period contract wi, and agent I chooses a; = (Fy,cy) in

response. The principal’s optimal second-period payoff guarantee is V; (wi,a1) = ® (wi,a1)?, where

O (wy,a1) = maX{\/JEFl [y —=wi], \/EFO [y = wi] = Vg wi,a1), VEr,[¥] — Vo, VEF [¥] - \/C_l}

(with Vx = —oo for x < 0 by convention). (6)

Specifically,
1. If \JEF, [y — w1 (y)] attains the maximum in equation (6), then the principal’s optimal second-period
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payoff guarantee is achieved by wy, = wy.

2. If \/EF0 [y=wi ()] - \/g (w1, ay) attains the maximum in equation (6), then the principal’s optimal

second-period payoff guarantee is achieved by

gwr,ay)

wa()=wiM+m-y-wi(y) with m= EFo[y——m(y)]

€ [0,1]. @)

3. If \JEg,[yl = +fco attains the maximum in equation (6), then the principal’s optimal second-period

payoff guarantee is achieved by wy (y) = spy with sp = +/co/EF, [y]-

4. If \JEr, [yl = +Jc1 attains the maximum in equation (6), then the principal’s optimal second-period
payoff guarantee is achieved by wy (y) = say with 5o = +Jc1/EF, [y].

The proof of Lemma 3 mainly consists of two parts. The first part is to prove that, when each element
in the quadruple defined by equation (6) attains the maximum, the principal’s payoff guarantee in the second
period from offering the corresponding contract is exactly as claimed in the statement of Lemma 3. This
requires providing lower bounds on the principal’s second-period payofts, and constructing worst-case tech-
nologies to show that the bounds are tight. The second part is to show that, under arbitrary second-period
contracts, the principal’s payoff guarantee is not strictly higher than & (wy,a1)?. This requires construct-
ing worst-case technologies to show that the payoff guarantee is lower than (the square of) at least one of
element in the quadruple.

Note that compared to the case of advancing technology, the principal acquires more knowledge from
the observation of a; under constant technology. As an implication, her optimal second-period payoft guar-
antee takes a more complex form that depends directly on the first-period contract wy: how you exploit is
related to how you explore.

Lemma 3 indicates that, as long as the first-period contract w; is nonlinear, and the observed action a;
is such that one of the first two elements in the quadruple defined by equation (6) attains the maximum, then
the principal’s optimal second-period guarantee V; (wy,ay) is achieved by nonlinear contracts. On the other
hand, for linear first-period contracts wy, the four contracts mentioned in the statement of Lemma 3 are all
linear. This shows that optimal way for the principal to respond to the knowledge gained is closely related

to the specific approach she chooses to explore in the first period.
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4.3 First Period Analysis

In the previous subsection, we have focused on principal’s problem in the second period and fully character-
ized her optimal second-period payoff guarantee. This section analyzes the principal’s first-period problem
in the dynamic relationship, that is, choosing a first-period contract w; to maximize her overall payoft guar-
antee U (wy).

We first state the main result of this section, Theorem 2, which establishes the optimality of a linear

first-period contract.

Theorem 2. In the case of constant technology, there exists a linear first-period contract wy that maximizes

the principal’s overall payoff guarantee U (wy).

The principal’s optimal overall payoff guarantee is achieved through a linear first-period contract, to-
gether with an optimally chosen linear second-period contract.

Similar to Theorem 1, the proof of Theorem 2 takes two steps: (1) improve any nonlinear first-period
contract to a linear one; (2) prove that the maximum of the principal’s first-period problem exists within
the class of linear first-period contracts. Since the principal’s optimal second-period payoff guarantee in the
previous subsection takes a more complicated form (equation (6)), the proof here is more lengthy, but the
main idea remains the same. In particular, the closed-form characterization is very useful. First, it provides
a tool to compare the overall payoff guarantee between different first-period contracts, essential for showing
that any nonlinear first-period contract can be improved by a linear one. Second, the expression (6) is the
maximum of four continuous functions (in the appropriate sense of continuity), and the continuity is key to
show existence of an optimal linear contract.

Although Lemma 3 shows that, following nonlinear first-period contracts, optimal second-period con-
tracts may also be nonlinear in some cases, here we demonstrate that he principal’s optimal overall payoff
guarantee is achieved by a linear first-period contract (along with an optimally chosen linear second-period
contract). The principal has the opportunity to explore in the first period, and linear first-period contracts

are optimal in terms of utilizing the exploration opportunity, making them even more robust.

5 Conclusion

In this paper, we study a two-period moral hazard problem, where the principal does not know the action
sets available to the agents and demands contracts to be robust to this uncertainty; she has the opportunity

to explore in the first period and observes the chosen action, and then offers a new contract to the second
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agent based on this knowledge. We introduce and compare three different notions of dynamic worst-case
considerations. Within each notion, we define a suitable rule of updating and characterize the principal’s
optimal payoff guarantee, thereby identifying how the principal should respond to knowledge and design
new contracts. The results show that linear contracts are robustly optimal not just in static settings, but also
in dynamic environments with exploration.

We consider a contribution of this paper to propose possible ways to extend robust models in mech-
anism design to allow for multiple interactions and exploration. Despite the presence of nonquantifiable
uncertainty, designers can gradually improve their understanding of the environment in which they repeat-
edly engage, using the appropriate rule of updating. We hope the generalizability of this approach across

other models will be further explored in future work.
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Appendix A Proofs of Results in the Main Text

A.1 Proofs for Section 3

Proof of Lemma 1. Consider an arbitrary action a; = (F,cy) agent 1 would take under contract w;. We
need to show that the principal’s interim payoff guarantee, U (Wi|ay), is at least U (w1). Note that

U(ilay) = Ep, [y—-wi]+8-V; (a1),

where V; (ar) = ® (a;)* with

®(a;) = max {x/EFa[y]—\/G}.

acAgU{a;}

It suffices to construct another action aj, which may be taken by agent 1 under w; and some other
technology, such that U (w1 ’a’l) < U (Wilay). By assumption, ag is agent 1’s best response if A; = Ag, so an
action @} may be taken by agent 1 under w if and only if his payoff from choosing a] is higher than from
choosing ag. Consider the following two cases.

Casel. Ep, [y] > Ef, [y]
Let a} = ap. When agent 1 takes action ay in response to wy, the principal’s resulting payoff in the first
period is
Ep, [y = wi] = (1 = s)Ep, [y] < (1 = s Ep, [y] = Ep, [y - #10)],
so her payoff in the first period under (wy|ag) is weakly lower than under (Wy|ay).
Moreover, the principal’s optimal second-period payoff guarantee is V; (ag) = ©@ (ap)? with

@ (ag) = %«{ VER, V] - Vea) -

By definition we have 0 < @ (ap) < @ (a1), which implies V3 (ag) < V; (a1). The principal’s interim payoff
guarantee is

U (wilag) = Er, [y —wi()] + B - V5 (ao)
<Ep [y- W] +B-V; (@) = UWila),

as desired.

Case 2. Ep, [y] <Ep, [y]
Let 1 = Er, [y]/Er,[y] € [0, 1] and let F/ be the mixture AFg + (1 — 1) §. Note that Ep: [v] = Er, [y].

Consider a] = (F 1 cl). Note that

Ep [wi ] =1 = ABr, [wi 0] = ¢1 = As1EF, [y] = 1 = 1BF, [y] = c1 = Ep, (11 0] = c1,

and
Er, [w1 ] = co = s1EF, [y] = co = Er, [W1 ()] = co.
Thus,

(Br; [wi 0] = c1) = Er, [w1 )] = co) = Br, [W1 0] = €1) = (B [01 ()] = c0) 2 0,
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implying that a] may be chosen by agent 1 in response to wy under some technology.
When agent 1 chooses action &/ in response, the principal’s resulting payoff in the first period is

Er [y = wi0)] = 4B, [y = wi()] = A(1 = s) Ep, [y] = (1 = s1) Er, [y] = B, [y = #1(0)],

so her payoff in the first period under (w1 |a'1) and under (Wila;) is exactly equal.

2
Moreover, the principal’s optimal second-period payoff guarantee is V3 (a’l) =0 (a’) with

1
(I)(a’l) = max }{\/Epa[y] - \/a}

aeAgu{aQ

From EF; [v] = Ef, [y], it follows that ® (a’l) = @ (ay), which implies that V; (a;) = VJ (a1). The principal’s
interim payoff guarantee is
U(wila}) =Ep [y - wi)] +8- V3 (a})
=Er, [y =] +8-V; (a1) = U(wilay),

as desired.

This completes the proof. O

Proof of Lemma 2. We first reformulate program (5) as an equivalent maximization problem with contin-
uous objective function and compact feasible region. Slightly abusing notation, we use U (s;) instead of
U (w1) to denote the infimum value of program (5). Note that both the objective and the constraints of pro-
gram (5) depend on the choice variables (F, c1) only through the value of (Ef, [y],c1). Rewrite Ep, [y] = x
and c; = z with x, z > 0. Plugging into the original program (5), we obtain an equivalent program

Usp=inf (1-s)x+p¢(x.2°

(A.1)
st. six—z> max {s1Bp, [y] -}, X220,
a€AgU{(50,0)}
where
¢(x.2) = max{f ~ Ve, max { VEr, ] - \/a}}. (A.2)
0

Let X = maxgea, Er,[y] > 0, and v = maxXgeq, { vVEF,[y] - \/G} > 0. Suppose

(Fo,co) € argmax {s;Eg, [v] —ca}.
a€AU{(60,0)}

Note that (xo, z0) = (Er, [y], co) is feasible in program (A.1) and leads to objective value
(1-s1)x0+B¢(x0,20° <A —s)X+5-V".
If x > x, then

(A=sD)x+B-¢(x2> >0 —-s)T+p 7
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Therefore, restricting x € [0, x] will not change the infimum of program (A.1). Moreover,
s;x—z>20 = z<six<x,

so restricting (x, z) € [0, )7]2 will not change the infimum of program (A.1).
Consider the following program

sy =sup Wnzs)=—((1-s)x+B-¢(x2)°)
xz (A.3)
s.t.  (x,2) €I(s1),

where @ is defined by equation (A.2), and T is defined as follows:

I(s) = 0,3 : s1x—z> Er, [V] - cal ¢ -
sn={woe 03P inx-c> _mun | (15, bl -l

By definition, ¥ : [0,X]* X [0,1] — R is a continuous function, and T : [0,1] =3 [0,%]* is a compact-
valued and nonempty-valued correspondence. Moreover, the infimum of program (A.1), U (s1), is given by
=" (s1).

Note that for each sy, I'(s;) defines a half plane intersecting a square, and that the half plane shifts
linearly in s;. Thus, I is both upper and lower hemicontinuous. It then follows from Berge’s maximum
theorem that ¥* is continuous, and

I (s1) ={(x, 20 €T (s1) : P (x,z551) = ¥ (s1)}

is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program (A.3)
exists for all s, and the supremum can be replaced by maximum.

It follows that the infimum in program (A.1) and therefore the original program (5) can both be replaced
by minimum, and the resulting minimum value U (s1) = —* (s1) is continuous in s;. Hence, U (s1) achieves
a maximum over [0, 1]. This maximum is also the optimal guarantee over all linear contracts. O

Proof of Theorem 1. According to Lemma 2, among all linear first-period contracts, there exists an optimal
one, call it wj. If wy is any other (nonlinear) first-period contract that outperforms wy, then by Lemma 1,
there is a linear contract that in turn does at least as well as wy. But this contradicts the fact that wj is an
optimal linear contract. Therefore, w] is optimal among all first-period contracts. O

A.2 Proofs for Section 4
A.2.1 Proofs for Subsection 4.2

If the principal offers w, = wj, agent 2 will choose a; again. This just repeats her first-period payoft
Ef, [y — wi (y)] in the second period.

To prove Lemma 3, we start by establishing three lemmas, Lemmas A.1, A.2, A.3, to prove that the
principal’s payoff guarantee in the second period from offering the remaining three contracts, (i) wo (y) =
w1 (¥) + m - (y — wy (y)) with m defined by equation (7), (ii) wa (y) = s2y with 52 = +/co/EFr, [v], and (iii)
wa (y) = soy with 52 = /c1/EF, [y], is exactly as claimed in the statement of Lemma 3.

Lemma A.l. If \/]EFO [y-wi ] - \/g (wy,ay) attains the maximum in equation (6), and the principal
offers wo (y) = w1 (y) + m - (y — wy (y)) with m defined by equation (7), then her payoff guarantee in the

2
second period is exactly (\/EFO [y-wi ] - \/g (wy, al)) .
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Proof of Lemma A.1. Let go = g (wi,a1) = (B, [w1 ] —c1) — (B, [w1 O] — co).

If VEg, [y —wi ()] - /g0 attains the maximum in equation (6), then it holds that /Er, [y — w1 ()] -
V80 = vEF, [yl = +fco > 0, which implies that m € [0, 1].

Suppose the principal offers wy (y) = wy (y) + m - (y — wy (¥)) with m defined by equation (7). We first

2
show that this guarantees her at least ( VEE, [y —wi (] - \/g_o) .

Let (F7, c3) be the action chosen by agent 2. By agent 1’s rationality, we have

Er, [wi ] = c1 2 Eg, [wi )] — 2.

By agent 2’s rationality, we have

Er, [wa ()] = ¢2 = Egy [w2 ()] — co.

Summing up the two inequalities, we obtain

m-Ep, [y —wi ()] = Er, [w2 () = w1 O] = (Er, [w2 )] = o) = (Er, [w1 ()] = c1)
=m-Er, [y = w1 (] - go.

implying that
Er, [y = w1 0] 2 Er, [y = w1 ()] - go/m.

Therefore, the principal’s payoff in the second period is
Er, [y =w2 O] =Ep, [y —wi W] =m-Ep, [y = w1 (] = 1 =m) Ep, [y — w1 ()]
2
> (1= m) By [y = w1 O] - go/m) = (B [y = w1 0] = Vo)

as desired.
Next we show that her payoff guarantee from w, (y) = wy (y) + m - (y — wy (y)) cannot be strictly higher

2
than ( VEF, [y —wi ()] - \/g_o) , since this is exactly her payoff when the technology is A = {ag, a;, (F’, )},
with F/ = (1 —=m) Fo+m-6p and ¢’ = co — (m - Ep, [w1 ()] + go).
The proof takes three steps.

Step 1  Er, [y—wi ()] — V8o = VEr[yl — +co implies co > m-Ep, [wi ()] + g0, so ¢’ is indeed

nonnegative.
It suffices to show

Ery[y] = JEr, [y = w1 ] + Vg0 2 >m-Ep, [w1 ]+ go

(VERDI- )

& (VBRDI- B [y -wi <y>])2 > m-Bry w1 )] = 2v8o - (VERDT = B, [y = w1 0)])

& (\/EFO[)’] — \EF [y - w1 (y)])z >m- (EFO [w1 )] =2 /Er, [y = w1 O] - (\/EFO[y] — \Er [y —m (Y)]))-

(A4)
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Note that

By 1 O] = 2By [y = w1 )] VERDT = yEr [y = w1 0]

=Ep, [w1 )] = 2+/Er, [y — w1 O] - \/EFO U]%Fojg;:yi] O]
Er | (y)]
(\/W VEFR, [y —wi (y)) (\/IW VEF [y = wi (y)) (\/EFO = \Er [y —m (y)) :

Therefore, inequality (A.4) is equivalent to

(m—m)zzm.(m_m)z’

which is implied by the assumption that \/Ef, [y — w1 ()] > +/g0 (or equivalently, m < 1).

Step2 A = {ag, a1, (F’, ")} is compatible with (wy, a;). That is, agent 1 chooses a; in response to w.
Agent 1’s payoff from (F’,¢’) is

Ep [wi()] = ¢’ = (1 =m)Eg, [wi(»)] = co + (m - Eg, [w1 ()] + go)
= (Er, [w1 )] = co) + go = Ef, [w1 )] = c1,

so he would choose a; = (F, cy) in response to wj.

Note that agent 1 is actually indifferent between (F, ¢1) and (F’, ¢’), and we will show below that agent
2 is indifferent between (F, co) and (F’, ¢’). Technically to ensure that agent 1 chooses (F', c) and agent
2 chooses (F’,c’) we can set F/ = (1-m+¢&)Fo+ (m—¢)dp and ¢’ = ¢o — (m-Ep, [w1 ()] + go) + & -
Efr, [w1 () + (m/2) - (y — wi ()] then let £ | 0. Many of the following cases of potential indifference shall
be treated similarly, and we omit them for brevity.

Step 3 If A = {ag,a1,(F’,c’)}, then agent 2 chooses (F’,c’) in response to wy, leading to a payoff of

2 . .
(V Ery [y —w1 (] = \/%) for the principal.

Agent 2’s payoff from (F’, ¢’) is

Ep [wo)] = ¢’ = (1 =m)Eg, [wi () + m - (y = w1 ()] = co + (m - Ep, [wi ()] + go)
= EF, [Wl ()’)] +m-Ep, [y - Wi ()’)] -m- Er, [y - Wi (Y)] —¢cot+ 80
= Er, [w2 ()] = g0 = co + g0 = Ef, [w2 ()] = co,
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and his payoff from a; = (Fy,c;) is

Er, [wo()] = c1 =Ep, [wi() +m -y —wi ()] —c1
=m-Er, [y—wi O]+ (Er, [w1()] = co) + g0

2
Sm-( Ep, [y —wi1 ()] - \/g_o) + (Efy [w1(»)] = co) + go

<m- \/EFO [y —wi (] ( \/EFO [y —wi (] - \/g_o) + (Er, [w1(] = co) + 2o
=m-Er, [y —wi ] = go + (Er, [wi1()] = co) + g0 = Er, [w2 ()] = co,

so he would choose (F’, ¢’) in response to wy.
This leaves the principal with payoff of

Er [y-woOW] =Ep [y-wi®]-m-Ep[y-wi (] =10 -mEp[y—-w ()]
= (1= mPEp, [y = w1 0] = (Bry [y = w1 0] - «/_)
as desired.

This completes the proof. O

Lemma A.2. If \JEr [yl — +/co attains the maximum in equation (6), and the principal offers the linear
contract wy (y) = s2y with sy = Jco/EF, [y], then her payoff guarantee in the second period is exactly

(VBRI - Ve

Proof of Lemma A.2. Suppose that y/Er, [y] — +/co attains the maximum in equation (6), and the principal
offers the linear contract wy (y) = sy with 52 = +/co/EF, [y]. We first show that this guarantees her at least

(VERDI - va) -

Let (F7, cp) be the action chosen by agent 2. By agent 2’s rationality, we have

Er, [w2 ()] = c2 = Efg, [wa2 ()] = co,

which further implies that

SZEFZ [y] = EFZ [W2 (y)] > EFZ [W2 (y)] ) > EFO [W2 (y)] —Co = SZEF() [y] - o,
and hence
Er, [y] 2 EF, [y] = co/s2.

Therefore, the principal’s payoff in the second period is

Ep, [y —=w2 ()] = Er, [(1 = 52) y] = (1 = 52) (BF, [y] = co/s2) = (\/EFO[)’] - \/0_0)2,

as desired.
Next we show that her payoff guarantee from this linear contract cannot be strictly higher, since

( vVEF,[y] \/_) is exactly her payoff when the technology is A = {ag, a, (F’,0)}, with F = AFy+(1-21)d¢

where A = 1 — /co/Er, [y] € [0, 1].
The proof takes two steps. Let go = g (w1, a1) = (Ep, [w1 )] = ¢1) — (BE, [w1 )] — co).
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Step1 A ={ag,ai,(F’,0)}is compatible with (wy, a;). That is, agent 1 chooses a; in response to wj.
Agent 1’s payoff from (F’,0) is Ep [wi()] = 4B, [wi(3)] = (1= yco/Er, [V]) Er, [w1 ()], and we
have

JEn bl < B ol —er & (1= [Z0) B0 o] < @ b 0] -a) +0

,/EFCO[ Er [ 0)] = o+ 80 2 0.

(1 EFO[ |

From
VERDT - veo = Bry [y = w1 0] - vao,
we obtain
Ery [wi 0] 2 B, ]~ (VER DT~ veo + VEo) -
and thus

(@) o
mEFO[W]@)]_CO-'_gOZ Er, Y] (EFO ~ (VBRI - Veo + \/_))_co+go

:(l_ Er, [Y])(\/__ \/_)

as desired. So we indeed have Ep [wi(y)] < Ep, [wi1(y)] — c1, implying that agent 1 would choose a; =

(F1,c1) in response to wy.

Step 2 If A = {ap,a,(F’,0)}, then agent 2 chooses (F’,0) in response to wp, leading to a payoft of

( VEF,[y] — \/%)2 for the principal.

Agent 2’s payoft from (F’,0) is

B b)) = 481, ] = (1= [550)[g B D)
= (VBRI - veo) Veo = [=—— B, [y] - ¢

Er, [y]
= 52EF, [y] — co = Eg, [W2 ()] — co.

His payoff from a; = (Fy,¢1) is Ep, [w2(y)] — ¢1 = vco/EF, [y] - Er, [y] — ¢1, and we have

Er, [y] —c1 <Egy [w2)]=co & ﬁ Er [yl —c1 < (\/EFOD’] - \/C_o) Veo

(&)
EFo [y]

From +/Er,[y] = v/co = +Er,[y] = +/c1, we obtain E, [y (w/EFO — oo + \/_) and thus
(VEr,T - Veo) \/C_o—( ﬁ “Ep, ] —cl)
> (VEr DI - \/C_o)\/c_o—( E;ﬁ (VERDI - veo + var) —cl)

(1_ EFO[ ])(\/__ \/_)



as desired. So we indeed have Efr, [wa(y)] — ¢1 < Ep, [w2 )] — co = Ep [wa(y)], implying that agent 2
would choose (F’,0) in response to w».
This leaves the principal with payoff of

Ep [y — w2 ()] = ABF, [(1 = s2)y] = (1 - EFCOO[y])(l - EFCOO[y]) -Er, [v]
= (VErDI- V) .
as desired.
This completes the proof. O

Lemma A.3. If \/Er [y] — +fc1 attains the maximum in equation (6), and the principal offers the linear
contract wy (y) = 2y wzth s2 = +Jc1/EF, [y], then her payoff guarantee in the second period is exactly

(VERDI - ver) -

Proof of Lemma A.3. If \/]F +/c1 attains the maximum in equation (6), then it holds that /Er, [y] —
Vel = \/IW v/co > 0, which implies that c{/Er, [y] € [0, 1].
Suppose the principal offers the linear contract wy (y) = soy with s, = +/c1/EF, [y]. We first show that
this guarantees her at least (\/IW ) Let (F, c2) be the action chosen by agent 2. By agent 2’s
rationality, we have
Er, [w2a )] = c2 2 Ep, [w2 (D] = c1,

which further implies that

$2EF, [y] = B, [w2 )] 2 EF, [w2 ()] = ¢2 2 Ef, [w2 ()] = c1 = $2BF, [y] —c1,

and hence
Er, [y] 2 Er, [y] = c1/52.

Therefore, the principal’s payoff in the second period is

Ep, [y = w2 )] = Br, [(1 = 52)y] 2 (1 = ) (B, [y] - c1/52) = (VER, ] - \/0_1)2,

as desired.
Next we show that her payoft guarantee from this linear contract cannot be strictly higher, since this
is exactly her payoff when the technology is A = {ag, a1, (F’,0)}, with F’ = AF| + (1 — 2)6p where A =

1 - \/CI/EFl [y] (S [0, 1]

The proof takes two steps.

Step1 A ={ag,a;,(F’,0)}is compatible with (wy, a;). That is, agent 1 chooses a; in response to wj.
Agent 1’s payoff from (F’,0) is Ep [wi(y)] = AEp, [w1(y)] = (1 — y/c1/EF, [y])EFl [wi(y)], and we
have

C1

B ])EF1 [w1)] < Ep, [wi 0] = ¢

(1 EFC;[ ])EF| Wil <EBp [wi)] -1 & (1

C
mEﬂ [wi()] = c1 2 0.
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From /Ep,[y] = V1 = vVEF, [y — wi ()], we obtain Eg, [w; (y)] > Ep, [y (\/Epl Vel ) and thus
Ccl Cl
E E E —c1=11-
,/EFl O] Fi [w1)] - B Dl ( F L (\/ Ly ) ) 1 ( By [y])CI >0,

as desired. So we indeed have Eps [w;(y)] < Ef, [w1(y)] — ¢1, implying that agent 1 would choose (F,c1)
in response to wj.

Step 2 If A = {ap, a1, (F’,0)}, then agent 2 chooses (F’,0) in response to wy, leading to a payoft of

( VEE, [y] = 1 )2 for the principal.

Agent 2’s payoff from (F”,0) is

B b2 = 2 Lo = (1= [0  \J5g Bn )

:(\/EFI[)’]— \/C_l) Ve = ,/ﬁ-EFl [y] -1

= 2B, [y] = c1 = Ep, [w2 ()] - c1.

His payoff from (F, co) is Eg, [w2(y)] — co = vc1/Er, [y] - Er, [y] — co, and we have

EFCI[ ] ‘Ep, [y] —co <Ep, [w2)] -1 & EFC;[ ] -Er, [y (\/EF| )

From \Er, V] - ve1 2 VEr, DI - e, we obtain Er, [y] < (VEr ] - Ve + \/—) and thus
(VERDI - ver) ver ( = Bl - co)
Z(M—va)va—(r (VERDI - v + V) -
(1= g v

as desired. So we indeed have Ef, [w2(y)] — co < Ef, [w2 )] — ¢1 = Ep [wa(y)], implying that agent 2
would choose (F’,0) in response to w,.
This leaves the principal with payoff of

Ep [y = w2 0] = ABF, [(1 = 52)y] = (1 - -l )(1 - - )‘EFl [v]

= (VErDI- va) .

as desired.

This completes the proof. O
We are now ready to prove Lemma 3.

Proof of Lemma 3. If the principal offers wy = wj, this guarantees her payoff in the first-period, which is
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equal to Er, [y —wi (y)]. Note that her payoff guarantee from wy = w; cannot be strictly higher, since this
is exactly her payoft when the technology is A = {ag, a1}, which is compatible with (wy, aj).

Together with Lemmas A.1, A.2 and A.3, we have shown that by offering the best among the four
contracts: (i) wo = wy, (i) wp (y) = wy (y) + m - (y — wy (y)) with m defined by equation (7), (iii) wy (y) = sy
with 5o = +/co/EF, [y], and (iv) wa (y) = soy with 55 = +/c1/EF, [y], the principal’s payoff guarantee in the
second period is exactly given by & (w1,a;)?, where @ is defined by equation (6). The principal’s optimal
second-period payoff guarantee, \7; (w1, ay), is thus at least ) (wi, al)z.

Now consider an arbitrary second-period contract wy. It suffices to show that the principal’s payoft
guarantee is not strictly higher than ) (wi, al)2 under wy.

Consider the following two cases.

Case 1. Epl [W2 (y)] -Cc1 2 EFO [W2 (y)] - Co.

1. If Ep, [w2 ()] = Ep, [w1 (y)], consider the second-period contract w, when the technology is A =
{ao, a1}, which is compatible with (wy,a;). Agent 2 would prefer to take action a; = (Fy,cy). This
leaves the principal with a payoff of

Er, [y = w2 W] <Ep, [y - w1 0] < ®(wi,a1)?,
as desired.

2. If Ep, [w2(y)] < ci, consider the second-period contract wp when A = {ag,ay, (6o, 0)}, which is
compatible with (w1, a;). Agent 2’s payoff from (dg, 0) is

w2 (0) > 0> Ep, [wa()] - c1,
so he would prefer to take action (dg, 0). This leaves the principal with a payoff of
w2 (0) <0 < & (wy,a1)?,
as desired.

3. If c; < Ep, [wa] < Ep, [w1 )], let A = 1 = ¢ /Ep, [w2(y)] € [0,1] and let F” be the mixture
AF1 + (1 — 2)dp. Consider the technology A = {ay, ai, (F’,0)}.

We proceed with two steps.

Step 1 A is compatible with (wy, a;). That is, agent 1 chooses a; in response to wy.

Agent 1’s payoft from (F’,0) is

EF] [Wl ()’)]
EF] [WZ(y)]

so he would prefer to take action a; = (F1,c;) when A = {ag, a;, (F’,0)}.

Ep [w1()] = ABF, [w1()] = EF, [w1 ()] - c1 <Ep, [w1 (] -c1,

Step 2 Agent 2 chooses (F”,0) in response to w», resulting in the principal’s payoff no more than

(VERDI - var) -
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Agent 2’s payoft from (F’,0) is

Ep [wa(0)] = ABF, [w2(»)] + (1 = Dw2(0)
> AEr, [w2(y)] = Ef, [w2(0)] = c1,

which is also larger than Ef, [wa ()] — co by assumption. So he would prefer to take action (F’, 0).

This leaves the principal with a payoff of
Ep [y =w2 ] = AEp, [y = w2 0] + (1 = D) (0 = w2 (0))
C1
(1 - EF][W—Z(Y)]) (Er, Y] = Er, [w2 0]
< (VERDI- Var) . (A5)

which is no more than @ wi,a 1)2, as desired. The last inequality (A.5),

(1_6—‘)055[] Er, [w2 0)]) < (VERDI - var)

<ABp, [y-w2 (] =

Er, [w2 )]
2
E
[\/EFI [w2 ()] - Eil fvlz ) ] >0

which always holds.

Case 2. EF. [W2 (y)] —C1 < EFO [W2 (y)] — C.

1. If Ep, [w2 (y)] < co, consider the second-period contract wo, when A = {ay, a1, (69, 0)}, which is
compatible with (w1, a;). Agent 2’s payoff from (6, 0) is

w2 (0) 2 0 > Efg, [wa(y)] - co,
so he would prefer to take action (9, 0). This leaves the principal with a payoff of
~w2(0) <0 < d(wy,a1)?,
as desired.

2. If Ef, [w2 (v)] = co, and it holds that

either (1) Ep, [w1()] < Ep, [w1 )] —c1,

Er, [w1(0)] ‘o (A.6)
Ery [wiO)] = Er, [wi W] —c1)
let A = 1—co/EF, [w2 ()] € [0, 1] and let F’ be the mixture AF( + (1 — 2)dp. Consider the technology
A ={ag,a;,(F’,0)}.

We proceed with two steps.

or (i) Ep [w2()]<

Step 1 A is compatible with (wy, a;). That is, agent 1 chooses a; in response to wy.
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Agent 1’s payoft from (F’,0) is

E
Ep [wl(y)] = AEF, [WI(Y)] = Er, [Wl (y)] - %CO
<Ef, [w1 ] -c1. A7)

Note that inequality (A.7) holds exactly due to the assumptions in (A.6). So agent 1 would prefer to
take action a; = (F1,c1) when A = {ag, a1, (F’,0)}.

Step 2 Agent 2 chooses (F’,0) in response to wy, resulting in the principal’s payoff no more than

(VERDI - veo) -

Agent 2’s payoff from (F”,0) is

Ep [wa(0)] = ABF, [w2(n)] + (1 = Dw2(0)
> AEr, [w2(y)] = Ef, [w2(»)] = co,

which is also larger than Ep, [wa (y)] — ¢1 by assumption. So he would prefer to take action (F”’, 0)
when A = {ag, ai, (F’,0)}.

This leaves the principal with a payoff of
Ep [y = w2 (0] = ABr, [y = w2 )] + (1 =) (0 = w2 (0))

< AEp, [y—-w2 ()] = (1 - EF[iv—Oz(y)]) (Er, [y] = Er, [W2 O)])

< (VERDI- V) . (A8)

which is no more than ® (wy, a;)?, as desired. The last inequality (A.8) holds for the same reason as
(A.5).

. If both inequalities in (A.6) are reversed, i.e.,

EFo [Wl(y)]
EFO [Wl(y)] > EF] [Wl (Y)] —C1 and EFO [WZ ()’)] 2 EFO [Wl()’)] — (EFI [Wl (}’)] — Cl)CO’

let

1= (Er, [w2a O] = c0) = (Br, [w1 ] = c1)

Ery [w2 0] = Er, [w1 O] ’
oo Er, [Ww1 W] (Er, [w2 )] = co) = Er, [Ww2 O] (B, [w1 )] = ¢1)
Ery [w2 0] = Er, [w1 ()] ’

and let F’ be the mixture AF( + (1 — 2)dg. Consider the technology A = {ag, a;, (F’, c’)}.

We proceed with three steps.

Stepl A€[0,1]and ¢’ > 0, so (F’,¢’) is a valid action.
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Note that

Er, [w1()] Er, [w1(»)]
Bro w2 00 2 g T @, i 00T =) " > Bra (w1091 = Bz 91 O] = <o)

so the denominator of A and ¢’ is positive.

co = Ep, [w1(0],

Moreover,

EF] [Wl ()’) —C]

|

Bry b2 0] =0 2 g e e ST en
|
[

Er, [w1 ()
> (o))
Er, [w1()] = (Er, [w1 )] = co)

so the numerator of A is positive.

=Ep, [w1 )] —c1,

The numerator of ¢’ is positive because

Ery [w1 O] (Er, [w2 )] = co) = Er, [w2 W] (Er, [wi ()] = 1)
Er, [w1(0)] c
Er, [w10)] = Er, [wi O] —c1)

& Ep, [w2(] >

Finally,

(Ery [w2 0] = co) = (EF, [w1 ()] = c1) < Egy [w2 )] = EF, [w1 ()]
& Ep w1 0] = co <Ef, [w1 )] —c1,

so A i1s indeed smaller than 1.

Step 2 A is compatible with (wy, a;). That is, agent 1 chooses a; in response to wy.
Agent 1’s payoft from (F’,¢’) is
Ep [w1()] = ¢’ = ABp, [wi()] = ¢’ = Bp, [w1 ()] = c1,

so he would prefer to take action a; = (F,c;) when A = {ag, a;, (F', c’)}.

Step 3 Agent 2 chooses (F’, ¢’) in response to wy, resulting in the principal’s payoff no more than
2

(\/EFO [y —wi W] = Vg wi,a)) .

Agent 2’s payoff from (F’, c") is

Ep [wa(3)] = ¢’ = AER, [w2(y)] + (1 = )w2(0) — ¢’
> AEr, [w2(0)] = ¢ = B, [w2(y)] = co,

which is also larger than Er, [w; (y)] — ¢ by assumption. So he would prefer to take action (F”,c”)
when A = {ag, a1, (F’,c")}.

37



This leaves the principal with a payoff of

Ep [y = w2 0] = AEp, [y = w2 0] + (1 = 1) (0 = w2 (0))

< A8, [y —wp (] = ERL2OZ O B I OZ9) g, ) 5y s )

2
< (\/EFO = w1 )] = VgOwran) | (A.9)

which is no more than ® (wy, a;)?, as desired. The last inequality (A.9),

(Er, [w2 (] = co) = (EF, [wi W] = 1) \/— .
Ol —Er ] Pl Babe b (VB by =1 0] = Vo)

(Br, b2 )] = Er, w1 )] = VEr = w1 O)]- Ve Ovran)” .

Er, [w2 0] = Er, [w1 ()] o

which always holds. (Recall that g (wy,a1) = (Ep, [w1 )] — ¢1) — (Bf, [w1 )] — co) = 0.)

Summing up the above cases, we prove that the principal’s payoff guarantee is not strictly higher than
& (wy, a;)? under any second-period contract w,.
This completes the proof. O

A.3 Proofs for Section 4.3

To prove Theorem 2, we start by establishing two lemmas, Lemmas A.4 and A.5. Lemma A.4 shows that
any nonlinear contract is outperformed by some linear one, and Lemma A.5 further shows that the maximum
of the principal’s first-period problem exists within the class of linear first-period contracts.

Lemma A.4. In the case of constant technology, the linear contract Wy defined by equation (3) satisfies
Uy) =2 U (wy).

Proof of Lemma A.4. Consider an arbitrary action a; = (F1, c;) agent 1 would take under contract w;. We
need to show that the principal’s interim payoff guarantee, U (Wlay), is at least U (w). The incentive gap is

g, a) = (B, [W1 0] = c1) = (Br, D1 ()] = o) 20,

and Lemma 3 shows that the principal’s optimal second-period payoff guarantee is \7; Wi, a1) = d 0wy, a1)?,
where

b (a1 = max { {2, [y = O \Er [y = #10)] = Ve Gir,an, VERDT - Veo, VERDI - Vei),

(with vx = —co for x < 0 by convention).
(A.10)

The principal’s interim payoff guarantee is
U (Wilar) = Ep, [y = wi)] + 8- V; i an).

It suffices to construct another action aj, which may be taken by agent 1 under w; and some other
technology, such that U (wl |a’1) <U (W1lap). Note that an action may be taken by agent 1 if and only if the

. . . . ,
incentive gap is nonnegative, i.e., g (w1 , al) > 0.
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Casel. Ep, [y] = Ep, [y]
Consider a| = ag. The corresponding incentive gap is g (w1, ap) = 0. When agent 1 takes action ag in
response, the principal’s resulting payoff in the first period is

Ery [y =wi] = A = s)Ep, [y] £ A = s)Ep, [y] = Er, [y = w1,

so her payoff in the first period under (wy|ag) is weakly lower than under (Wy|ay).
Moreover, it follows from Lemma 3 that the principal’s optimal second-period payoff guarantee is
V5 (w1, a0) = ® (w1, a0)?, where

® (wy,a0) = max{ Er, [y = wi1)], m_ \/C_o}.

Note that we have shown Eg, [y —wi(y)] < Ep, [y —w1(»)], so & (wy,ap) is also weakly smaller than
® (%1, a;) (given by equation (A.10)). This implies that V; (wy, ag) < V3 (W1, ay).
Therefore, the principal’s interim payoff guarantee is

U (wilag) = Er, [y — wiO)] + B+ V5 (w1, ap)
<Ep, [y - W] +8- V5 0b1,a1) = U (Wilay),

as desired.

Case 2. Ep, [y] <Ep, [y]
Let A = Er, [y]/EF,[y] € [0, 1] and let F| be the mixture AFy + (1 — 2) 6. Note that Er [v] = Er, [y].

Consider a} = (F e 1). The corresponding incentive gap is
g (Wl, ai) = (EF; (w1 ] - Cl) — (Er, [w1 @] = o).
Note that
Er [wi )] = c1 = ABp, [w1 )] = c1 = As1ER, [y] — e1 = s1EF, [y] — 1 = Ep, [W1 )] - c1,

and
Er, [w1 0] = co = s1EF, [y] = co = Er, [W1 ()] = co.

Thus,

g(wi,a) = (Br; [w1 )] = ¢1) = Br,y [w1 0] = co)

= (Er, Dv1 O] = 1) = (Br, [W1 )] = co)
= g(v?zl,al) > 0.

When agent 1 takes action @] in response, the principal’s resulting payoff in the first period is
Er [y = wi)] = Bp, [y - wi] = A1 = s Ep, [y] = (1 = s) Ep, [y] = EF, [y - 41O,

so her payoff in the first period under (w1 |a’1) and under (W1|a;) are exactly equal.
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Moreover, the quadruple in equation (6) with respect to (wl, a’l),

Epr [y = w1 yBro v = wi0)] = g (w1 ;). VER T - veo, [Er ] = Ver |,
(oo { y

takes the same value as the quadruple in equation (6) with respect to (W1, ay),

{JBr [y = O BRIy = )] = Vg G an, VERD - Ve, VER DI - Vi

It follows from Lemma 3 that the principal’s optimal second-period payoff guarantee also takes the same
value: \A/; (wl,a’l) = Vi‘ W1, ay).
Therefore, the principal’s interim payoff guarantee is

’
(Wl’al)

O, a1) = U (Wlay),

U (wild}) =B, [y - wip)] + 8- V3
=Ep [y- ] +8-V;
as desired.

This completes the proof. m]

Lemma A.5. In the case of constant technology, within the class of linear first-period contracts, there exists
an optimal one for the principal.

Proof of Lemma A.5. Assume the principal offers a linear first-period contract wy (y) = s1y with s; € [0, 1].

If agent 1’s payoff from taking ao is strictly negative, i.e., Er, [wi ()] — co = s1Er,[y] — co < 0, then

the principal cannot guarantee any positive payoff in the first period, since it is possible that the action

(609,0) € A, and the agent would strictly prefer this action to ag. Moreover, according to Lemma 3, the
. 2

principal’s optimal second-period payoff guarantee is V; (wq,(89,0)) = (\/EFO y] - \/c_o) . This is already

strictly worse than offering the alternative contract siy with s7 = +/co/EF, [y] instead, because doing so
2

guarantees a strictly positive payoff ( VEF, [yl - \/c_o) in the first period, and the payoff guarantee in the

second period can only get better.

Therefore, when searching for optimal linear contracts, we may concentrate on those with s; > co/Er,[y].

For any such linear first-period contract, suppose that agent 1 chooses a; = (£, c1) in response. As is shown

in Lemma 3, the principal’s optimal second-period payoff guarantee is ® (w1, a;)?, with ® defined by equa-

tion (6). Thus, her interim payoff guarantee is

Uwilay) = Br, [y —wi)] + 8- ®(wi,a1)* = (1 = s) Ep, [y] + 8- ® (wi,a1)*.

The worst-case overall payoff guarantee minimizes the above expression over all a; that agent 1 may choose
under some technology. Note that agent 1 prefers action a; over the known action aq if and only if the
incentive gap is nonnegative, i.e., g (w1, a1) > 0, which is equivalent to

(Er, [w1 O] = c1) = (Er, [w1 O] = co) = (s1BF, Y] = 1) = (s1EF,[y] = co) = 0.
Hence, the following program yields a lower bound on the principal’s overall payoff guarantee
inf  (1-s)Ep [y]+8-wi, (F1,c1))’

Fr.er (A.11)
st. (s1Ep [yl = c1) = (s1Ep [yl = co) = 0,
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because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by
program (A.11).

Conversely, if 51 > co/Er,[y], then for any feasible a; = (F,c;) in program (A.11), agent 1 would
take action a; in response to w; whenever the technology A is compatible with (w1, a;). The worst case
over all such technologies leaves the principal with exactly her interim payoff guarantee, U (wila;) =
(1 -sDEp [y] +8- ® (wy,a;)?. Thus, if a solution to program (A.11) exists, then the principal’s payoff
guarantee cannot be strictly higher than its minimum value.

The above analysis shows that, for s; > ¢o/EFr,[y], the worst-case overall payoff guarantee of any linear
first-period contract wy (y) = s1y is exactly characterized by program (A.11).

Suppose s1 > co/Er,[y]. We now reformulate program (A.11) as an equivalent maximization problem
with continuous objective function and compact feasible region. Slightly abusing notation, we use U (s1)
instead of U (w;) to denote the infimum value of program (A.11).

Plug w; (y) = s1y into equation (6) and let so = +/co/EF,[y]. We may rewrite & (wy,ap) as

D (wy,ar) = maX{\/(l —sDEF, [y \/(1 — s Er, Y] = Ve wi,a1), (A = 50) VE£, Y], VEF, Y] }

Similarly,

g(wi,a1) = (31Bp, [y] = c1) = (51 = 55) Bry[y] 2 0.

Note that both the objective and the constraints of program (A.11) depend on the choice variables
(F1,c1) only through the value of (Ef, [y], c1). Rewrite E, [y] = xEFr, [y], c1 = zBF, [y]. and let g (w1, a1) =
hEf, [y] with x,z,h > 0. Plugging into the original program (A.11) and cancelling out Eg, [y] from both
sides of the constraints, we obtain an equivalent program

O(sp)=inf ((1-s)x+8-¢(x.zhs1)?)Er, [y]
oot (A.12)

st. h=s1x— z—(sl—s0)>0 x,z>0,

where

¢ (x,z.h:51) = max { V(1 = sp) x, VT =51 = Vi, 1= 59, Vi — 2} (A.13)

Note that (x,z, h) = (1, sg, O) is feasible in program (A.12) and leads to objective value

((1 —-s)+8- max{\/l —sl,l—so} )EFO y].
If x > 1+, then

(I=s)x+B-d(x,z,h s 2 (1= 51)(1+8) +B(1 = sp)>
=(1=s1)+B(1 —s1)+B(1 = 5p)>

2
> —s1)+,8-max{\/l - 51,1 —so} .
Therefore, restricting x € [0, 1 + ] will not change the infimum of program (A.12). Moreover,

max{z,h}£z+h:s1x—(s1 —s(z))£s1x3x,

so restricting (x, z,h) € [0, 1 + ﬁ]3 will not change the infimum of program (A.12).
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Consider the following program

\i]* (S]) = sup \il(x’z, h’ sl) = —((1 - Sl)x +ﬁ . (’ZS()@Z, h, Sl)Z)
xzh (A.14)
s.t. (x,z,h) € T(s1),

where ¢ is defined by equation (A.13), and I" is defined as follows:
['(s;) = {(x,z,h) € [0,1 +ﬁ]3 th=s1x—z7— (s1 - sg)}.

By definition, ¥ : [0, 1 +/3]3 X [s%, 1] — R is a continuous function, and " : [s%, 1] =3 [0,1 +/5’]3 is a
compact-valued and nonempty-valued correspondence. Moreover, the infimum of program (A.12), U (s;),
is given by (—‘i’* (sl)) -Ep, [y].

Note that for each s, I' (s1) defines a plane intersecting a cube, and that the plane shifts linearly in s;.
Thus, I' is both upper and lower hemicontinuous. It then follows from Berge’s maximum theorem that W* is

continuous, and
B (s1) = {nzh) e T is) 1 ¥z hss0) = 97 (s))

is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program
(A.14) exists for all s, and the supremum can be replaced by maximum.

It follows that the infimum in program (A.12) and therefore the original program (A.11) can both be
replaced by minimum, and the resulting minimum value Us)) = (—‘i’* (sl)) - Ep, [y] is continuous in s;.

Hence, U (s1) achieves a maximum over [s(z), 1]. This maximum is also the optimal guarantee over all linear
contracts. o

Proof of Theorem 2. According to Lemma A.5, among all linear first-period contracts, there exists an opti-
mal one, call it w}. If w is any other (nonlinear) first-period contract that outperforms wj, then by Lemma
A.4, there is a linear contract that in turn does at least as well as wy. But this contradicts the fact that wy is
an optimal linear contract. Therefore, w} is optimal among all first-period contracts. O
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Appendix B Constant Technology: General Set of Known Actions

In this appendix, we analyze the situation where the principal knows a set of actions Ag available to the agents
in the case of constant technology. The first main result is Lemma 3’, which characterizes the principal’s
optimal second-period payoff guarantee V; (w1,ay) in closed form and identifies the contract that attains it
in various cases, analogous to Lemma 3 in the main text. Furthermore, we identify a sufficient condition on
the set of known actions, lower bound on marginal cost (Definition B.1), which ensures that linear contracts
still outperform nonlinear ones. This leads to the second main result, Theorem 2’, which generalizes the
optimality of linear contracts to richer environments.

In the first period, the principal believes that the true technology A could be any technology such that
A 2 Ap. After the principal offers contract w; and observes the action a; chosen by agent 1, we adapt the
rule of updating, compatibility, as follows:

Definition 1’ (Compatible). Given wy and a; = (F1, c1), a technology A is compatible with (w1, a1) if
1. A2 AgU{a}.

2. Er[wi1 (0] — ¢ < Ep, [w1 ()] — c1 forall (F,c) € A.

B.1 Second Period Analysis

We first consider the second period of the dynamic relationship, where the principal has offered some first-
period contract w; and observed agent 1’s chosen action a; = (F1, ¢1). She learns that the true technology A
is compatible with (wy, ap): it contains Ag and a, and does not contain any action strictly better than a; for
agent 1 under wy.

Again, if the principal offers the same contract w, = wy, agent 2 will choose a; since the two agents
have the same technology. This exactly repeats the first-period payoff Er, [y — wi (y)] in the second pe-
riod. Moreover, if some initially known action (Fy,co) € Ao leads to a higher payoff for the principal,
ie., Ep, [y —wi ] > Ep, [y —wi (y)], it might be tempting for the principal to try to obtain the payoff
Ef, [y —wi (y)] instead. However, we have already seen that achieving this payoff would violate agent 2’s
incentive constraint, and agent 2 needs to be compensated for not choosing a;. The amount of compensation
increases with the incentive gap, which may now vary for different actions.

Definition 2’ (Incentive gap). Given w; and a; = (Fy,c1), the incentive gap with respect to an action a,
g (alwy, ay), denotes the difference in agent 1’s payoff between choosing a, and a. Formally,

g(awi,ar) = (Er, [w1 O] = c1) = Br, [w1 0] = ca).

Analogous to Lemma 3, part 1 of Lemma 3’ shows that if Eg, [y — wi(y)] > g (aolw1, a1), the principal
can offer a modified version of w; with compensation in order to guarantee that her payoff in the second

2
period is at least ( \/]EF0 [y=wi ()] - \/g (aplwy, al)) . Let

Oan= max {\Br, [y wi 0] - Vz@wnal, (B.1)

acAgU{ar}

where we treat w, = wj as a special case of a modified version of w; (with no modification).'” The proof of
Lemma 3’ further shows that ® (w1, a1)? is the principal’s optimal guarantee using a modified version of w.

Note that the optimal static contract in Carroll (2015) is still available to the principal. By offering
this contract following the procedure in Carroll (2015), the principal can guarantee that her payoff in the

"By definition, g (a;|w;, a;) = 0. Moreover, it follows from agent 1’s rationality that g (aglw;,a;) > 0 for all ag € Ay.
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second period is at least © (al)z, where @ is defined by equation (2). Part 2 of Lemma 3’ shows that when
@ (a;) > O (wy,ay), it is optimal for the principal to offer this optimal static contract in the second period,
and doing so exactly attains payoff guarantee ® (a;)°.

We are now ready to present the main result of this subsection, Lemma 3’, which characterizes the prin-
cipal’s optimal second-period payoff guarantee V; (w1, a1), and establishes the optimality of the aforemen-
tioned contracts. It is optimal for the principal to offer either a modified version of w; with compensation,
or a linear contract.

Lemma 3'. Suppose the principal offers first-period contract wi, and agent 1 chooses ay in response. The
principal’s optimal second-period payoff guarantee is

Vs (wi,a1) = (max {® (wy,a;), ® (a))})*. (B.2)
Specifically,

1. If®(w,a1) = ©(a)) and a* € Ag U {a} attains the maximum in equation (B.1), then the principal’s
optimal second-period payoff guarantee is achieved by a modified version of wi:

g (a*lwi,ar)

o T e0,1]. B.3
EFa*[y_Wl(y)]E[ ] B-3)

wo()=wi ) +m-(y—wi(y) with m= \/

2. If ®(wy,a1) < ©(ay) and a* € Ay U {a,} attains the maximum in equation (2), then the principal’s
optimal second-period payoff guarantee is achieved by a linear contract:
Ca*

wy (y) =850y with s =  [————. (B.4)
Er,. [y]

B.2 First Period Analysis

So far, we have focused on principal’s problem in the second period and fully characterized her optimal
second-period payoff guarantee. Now we analyze the principal’s first-period problem of choosing a first-
period contract w to maximize her overall payoff guarantee U (w)).

The following condition, lower bound on marginal cost, is sufficient to ensure that the principal’s
optimal overall payoft guarantee is achieved by a linear first-period contract.

Definition B.1 (Lower bound on marginal cost). The known technology Ay satisfies lower bound on marginal
cost if, for any pair of actions (F,c),(F’,c") € Ag with O < Eg [y] < Ep [y], it holds that

' —c>Ep[y] -Er[y].

This condition provides linkage between different actions in the known technology Ag. Moreover,
it contains the economic meaning that, between known actions, the change in costs cannot be too small
compared with the change in expected output. Thus, this condition sets a lower bound on the marginal cost
of the known technology in discrete form.

The main result of the first period analysis is Theorem 2.

Theorem 2’. Suppose the known technology Ag satisfies lower bound on marginal cost. In the case of
constant technology, there exists a linear first-period contract wi that maximizes the principal’s overall
payoff guarantee U (w1).
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Analogous to Theorems 1 and 2, the proof of Theorem 2’ takes two steps: (1) Lemma A.4" improves any
nonlinear first-period contract into a linear one; (2) Lemma A.5” shows that the maximum of the principal’s
first-period problem exists within the class of linear first-period contracts. We remark that the additional
condition, lower bound on marginal cost, comes into play only in the first step of the proof (i.e., Lemma
A4).

We start from any arbitrary first-period contract wi, and construct another linear contract w; that pro-
vides the principal with a weakly higher overall payoff guarantee. Let ay = (Fo, co) be the action agent 1
will choose if the true technology A = Ag. The procedure of constructing the linear Wy is exactly the same
as in the proof of Lemma A.4, given by equation (3). When the known technology satisfies lower bound
on marginal cost, Lemma A.4’ below shows that the principal’s overall payoff guarantee is at least as high
under Wy as it is under wy.

Lemma A.4’. Suppose the known technology Aq satisfies lower bound on marginal cost. Let wi be any
first-period contract, and let (Fy, co) € Ao be agent 1’s best response when the true technology A is just Ay.
The linear contract W, defined by equation (3) satisfies U (W1) = U (w1).

Similar to the proof of Lemma A.4, for any action that may be taken by agent 1 under w; and some
technology A 2 Ay, the proof of Lemma A.4 explicitly constructs an alternative action @/ that may be taken
by agent 1 under w; and some other technology. The difference between this general case and the singleton
case is that the principal’s optimal second-period payoff guarantee V; is given by a more general expression
(B.2), and in particular maximum in ® or ® may be attained by a* € Ag\ {ap}. The condition lower bound
on marginal cost disciplines the relationship between a( and a*, which makes the proof method of Lemma
A.4 generalizable. In subsequent research, we hope to examine whether this (or any such) restriction is
necessary, in the sense that there exists a counterexample when it is violated.

By establishing Lemma A.4’, we have shown that any nonlinear first-period contract can be improved
by a linear one. To finalize the proof of Theorem 2’, it suffices to show that, within the class of linear
contracts, the maximum of U (wy) exists.

Lemma A.5’. Within the class of linear first-period contracts, there exists an optimal one for the principal.

The proof of Lemma A.5" requires to characterize the overall payoff guarantee of an arbitrary linear
first-period contract. Assume the principal offers a linear first-period contract w(y) = s1y with s; € [0, 1],
and agent 1 chooses a; = (F1,c¢1) in response. As is shown in Lemma 3’, the principal’s optimal second-
period payoff guarantee V;‘ (wy,ap) = (max {® (wi,ay),d (al)})z. Thus, her interim payoff guarantee is

Uwila)) = Ep, [y —wi] +8- V5 wi,a) = (1 = s) Ep, [y] + 8- V5 (wi,a1).

The worst-case overall payoff guarantee minimizes the above expression over all a; that agent 1 may choose
under some technology. Note that agent 1 prefers action a; over all known actions a € Ay if and only if

(Er, [wi] = c1) = (EBr, [wiO)] = ca) = (51Er, [y] = 1) = (51BF,[y] = ca) 2 0,  Va € Ao.

Moreover, agent 1 obtains at least his reservation payoff of zero, which can also be viewed as his payoff
from the null action (dg, 0). Hence, the following program yields a lower bound on the principal’s overall
payoff guarantee

nf (1= s)Ep, [y]+ 8- V3 (w1, (F1, c1)
1,C1 (B.5)
st. (s1Bp Iyl —c1) = (s1Er, [yl = ca) 20,  Va € Ag U {(60,0)},

because the principal’s interim payoff guarantee can never be strictly lower than the infimum given by
program (B.5).
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Conversely, for any feasible a; = (F, c) in program (B.5), agent 1 would take action a; in response
to w; when his technology A; = Ag U {a;}. The worst case over all such technologies leaves the principal
with exactly her interim payoff guarantee, U(wilay) = (1 = sy) Er, [yl +8- \75 (w1, ayp). Thus, if a solution to
program (B.5) exists (i.e., if infimum may be replaced by minimum), then the principal’s payoff guarantee
cannot be strictly higher than its minimum value.

Therefore, the worst-case overall payoff guarantee of any linear first-period contract wi(y) = sy is
exactly characterized by program (B.5). In the proof of Lemma A.5" in Appendix B.3, we formally show
the existence of minimum in this program, and its continuity in the first-period share s; using Berge’s
maximum theorem. Since the overall payoff guarantee is continuous in the first-period share sy, it achieves
a maximum. This maximum is also the optimal guarantee over all linear contracts.

Combining Lemmas A.4" and A.5’, we prove the main result of this section, Theorem 2’, which estab-
lishes the optimality of a linear first-period contract.

B.3 Proofs for Appendix B

To prove Lemma 3’, we start by establishing two lemmas, Lemmas B.1 and B.2, to show that the principal’s
payoff guarantees in the second period from offering the two contracts, (i) wy (y) = wi (y) + m - (y — w1 ()
with m defined by equation (B.3), and (ii) w, (y) = spy with s, defined by equation (B.4), are exactly as
claimed in the statement of Lemma 3’.

Lemma B.1. If® (wy,a;) > ®(ay) and a* = (F*,c*) € Ap U {a1} attains the maximum in equation (B.1),
and the principal offers wy (y) = wy (y) + m - (y — wy (¥)) with m defined by equation (B.3), then her payoff
guarantee in the second period is exactly

2
O (wi,ap)* = (\/EF* y=wi ] - \/g(a*IWual)) -

Proof of Lemma B.1. Let g = g(a*lwi,a1) = (Ep, [w1 )] —c1) — (Ep-[w1 )] —¢*) = 0. We have
O (wy,a1) = VEp [y — w1 ()] = Vg*. From © (w1, a;) > @ (a;) > 0, it holds that

g*
= _— 0,1].
"EANE D -wm oy <l

Suppose the principal offers w, (y) = wy (y) + m - (y — wy (v)) with m defined by equation (B.3). We first
2
show that this guarantees her at least (\/EF* [y=wi (] - \/g*) .

Let (F3, c2) be the action chosen by agent 2. By agent 1’s rationality, we have
Ep, [w1 O] = c1 2 Ep, [w1 )] - ca.
By agent 2’s rationality, we have
Er, [wa )] = c2 2 Eps [wa ()] = ¢
Summing up the two inequalities, we obtain

m-Er, [y =wi )] = Er, [w2 () = w1 )] = (Ep- [w2 ()] = ¢*) = (BF, [w1 )] = 1)
=m-Ep[y-w1 ()] -g",

implying that
Ep, [y =wi O] 2 Ep [y —wi1 (] - g"/m.
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Therefore, the principal’s payoff in the second period is
Er, [y =w2 O] =Er, [y —wi O] =m-Ep, [y = w1 0] = (1 =m)Ep, [y — w1 ()]

2
> (1= m) B [y = w1 0] - g'/m) = (B [y = w1 0] - VE)
as desired.

Next we show that her payoff guarantee from wy (y) = wy (y) + m - (y — w1 (y)) cannot be strictly

2
higher than (\/EF* [y=wi ] - \/g_*) , since this is exactly her payoff when the technology is A = Ay U
{a,(F',)},with F' = (1 —=m)F* +m-6pand ¢’ = ¢* — (m-Ep- [w; )] + g%).
The proof takes three steps.

Step1l ¢* >m-Ep [w; (y)] + g%, so ¢’ is indeed nonnegative.
From ©® (wy,a;) > ® (a;), we obtain

VEE [y =wi 0] = V& = O (wi,a1) 2 ®(ar) 2 Ep-[y] - Ve*,

2
> (VEFDI = yER [y -w 0)] + VE)
It suffices to show

(\/W— NEF [y —wi ] + ‘/_*)2>m'EF* (w1 ] + g
& (\/IW \EF [y - W1(y)) zm-Ep [wi )] -2+g* - | VEF Y] = \Er [y - Wl@))
& (VEFDI- yEr - (y)]) (B by )] = 2B [y = w1 0] (VER DT = B [y w1 00])).

(B.6)

which implies that

Note that

Epe [wi )] = 24(Ep [y = w1 )] - («/EF* D1 — \Er [y — wi <y)])
=Ep- w1 0] = 2B [y = wi )] - r O]

VEp [yl + \/EF [y —wi ]

E s
w1 0] ,(m+ JEr w01 -2 - 00)

" VErDl+ NEr D -1 O)]

(\/IF JEr [y - wl(y)) (\/IW VEF [y — W1(y)) (\/EF - VEr [y - W1(y))

Therefore, inequality (B.6) is equivalent to

(VEFDI- VB [y @)])2 > m-(VErDI - VB [y w @)])2,

which is implied by the assumption that /Eg« [y — wy (y)] > +/g* (or equivalently, m < 1).

Step2 A = AyU{ay,(F’,c’)} is compatible with (wy, a;). That is, agent 1 chooses a; in response to w.
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Agent 1’s payoft from (F’,c’) is

Ep [wi] = ¢" = (1 =m)Ep: [wi()] = " + (m-Ep: [w; )] + &)
= (Ep [w1 W] =) + " =Ep, [w1 ()] - c1,

so he would choose a; = (F, cy) in response to wj.

Note that agent 1 is actually indifferent between (F, ¢1) and (F’, ¢’), and we will show below that agent
2 is indifferent between (F*,c*) and (F”’, ¢’). Technically to ensure that agent 1 chooses (F', c;) and agent
2 chooses (F’,c’) wecan set F/ = (1—-m+¢&)F*+ (m—¢g)dpand ¢’ = ¢* — (m-Ep (w1 ()] +¢") + & -
Ep- [w1 (v) + (m/2) - (y — wy ()], and then let € | 0. Many of the following cases of potential indifference
shall be treated similarly, and we omit them for brevity.

Step3 If A = Ag U {ay, (F’, ")}, then agent 2 chooses (F’, ¢”) in response to w,, leading to a payoff of

(\/EF* [y-=wi ()] - \/g_*)2 for the principal.

Agent 2’s payoft from (F’,c") is

Ep [waW] =" =0 —=m)Ep- [wi () +m-(y—wi )] =" + (m-Ep- [wi )] + &%)
=Ep [wi O] +m-Ep- [y = w1 )] =m* - Ep- [y —w1 0)] - " + g*
=Ep [wa (] -g" =" +g" =Ep [wa ()] - "

For any action ag = (Fo, cp) € AgU{a1}, let go = g (aolwi1,a1) = (Er, [w1 )] — c1) = (Er, [Ww1 )] — o) = 0.
Agent 2’s payoff from ag is

Er, [W2)] = co = Epy [Wi1(y) + m - (y = w1 ()] = co = m - Ep, [y — w1 )] + (Br, [w1(»)] = co) .

Note that
VEF Iy = w1 0] = Vg = @ (wia) = \[Er, [y = wi 0]~ V&0
= B[y = w1 0] < (YEr [ —wi 0] - Vg + Vg—o)z.
Moreover,

Ery [wi] = co = Er, [w1 W] = c1) = g0 = (Bp: [w1 0] = ¢*) + &" - go.
Thus, agent 2’s payoff from ag,

Er, [wa)] —co =m-Eg, [y = wi ()] + (B, [W1(1)] = co)

2
Sm-(\/EF* [y=wi ] - Ve + \/g_o) +Ep w1 M) =) +8" - g0

<m-Ep-[y—wi O]+ Ep- [wi()] = ") (B.7)
=Ep [wo 0] = ¢* =Ep [w2 (] - ¢,

so he would choose (F”, ¢’) in response to w,. Recall m = \/ g*/Ep- [y — w1 (»)], so the last inequality (B.7)
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is equivalent to
2
m-(\/EF* [y =wi ] - V&' + \/g_o) +8" =g <m-Bp[y—wi ()]

8 *
< [1_ VEF* [y —wi (y)]](\/g_— \/g—)ZO,

which always holds.
This leaves the principal with a payoff of

Ep [y-woOW] =Ep [y-wi ] -m-Ep [y-wi (] =1 -mEp [y—-wi ()]

2
= A= mPEp [y -wi )] = (Er [ -wi 0] = V&) |

as desired.

This completes the proof. o

Lemma B.2. If O (wy,a;) < ©(ay) and (F*,c*) € Ag U {a,} attains the maximum in equation (2), and the
principal offers the linear contract wy (y) = soy with s, defined by equation (B.4), then her payoff guarantee

in the second period is exactly
2
® (@) = (VEr DI~ Ver) .

Proof of Lemma B.2. Suppose the principal offers the linear contract w; (y) = s>y with s, defined by equa-

2
tion (B.4). We first show that this guarantees her at least ( VEF [y] - \/F) .
Let (F3, c2) be the action chosen by agent 2. By agent 2’s rationality, we have

Er, [wo ()] = c2 = Eps [wa ()] = ¢,

which further implies that

2Bk, [v] = Ep, [Ww2(0)] = Er, [w2(0)] — ¢2 = Ep- [wo(0)] = ¢* = s2Ep+[y] — ¢7,

and hence
Er,[y] = Ep[yl = ¢*/s2.

Therefore, the principal’s payoff in the second period is

Er, [y = wa)] = B, [(1 = 52)y] = (1 - $2) Bl - ¢*/52) = (VEr DI - V)

as desired.
Next we show that her payoff guarantee from this linear contract cannot be strictly higher, since

2
(\/EF* [v] - \/F) is exactly her payoff when the technology is A = Ag U {ay, (F’,0)}, with F/ = AF* + (1 -

D)oo where 4 =1 — /c*/Ep«[y] € [0, 1].
The proof takes two steps. Let g* = g (a*|wy1,a1) = (Er, [w1 ()] = c1) = Bp [w1 ()] = ¢*) = 0.

Stepl A = AyU{aj,(F’,0)}is compatible with (wy, a;). That is, agent 1 chooses a; in response to wj.
Agent 1’s payoff from (F”,0) is Ep [wi(y)] = AEp [wi(3)] = (1= y/c*/Er D) Ep+ [wi()], and we
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have

(1— ¢ )EF*bvuynfsEFlbvuyn-—cl - (1—

Ep-[y] )EF* [w1)] < Ep [wi()] =) +¢&°

c
Ep[y]

o B )] = ¢ " 20
From
VEr ] - V& = 0 (@) > 0 v = \Br [y - wi)] - Y&
we obtain
r )] 2 Bl - (VER DT - V& + V57)
and thus

*

Ep-[y]

B o7 (B0~ (VERDT = Ve + ) e + g

(1= a0 ) (- Ve

as desired. So we indeed have Ep [wi(y)] < Ep, [wi1(y)] — c1, implying that agent 1 would choose a; =
(F1,c1) in response to wy.

Ep- [wi)] —c" +¢" 2

Step2 If A = Ag U {ay,(F’,0)}, then agent 2 chooses (F’,0) in response to w», leading to a payoff of

(\/EF* [v] - \/c_*)2 for the principal.

Agent 2’s payoft from (F”,0) is

Eﬂmw=wﬂmh@—Jc*)¢03EMﬂ

Ep-[y] Ep«[y]
= (VBRI = V) Ve = [ Bl -

= $2Ep:[y] = ¢* = Ep [w2(y)] - "

For any action ag = (Fo, cp) € Ag U {a1}, agent 2’s payoff from ay is

Ery w2 —co = | 5— E; a ] -Er,[y] = co,

By Erbl- S Beln0l=¢ o \Jomn Brl - < (VERDI- V) Ve

and we have
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From +Ep [y] - Vc* = @ (a;) > VEFR, [y] = +/co. we obtain Ep,[y] < (\/Ep* ] — Ver + \/c_o)z, and thus
(VBTN Ve - ({2 5t

Ep:[y]

> (VEF DT - Ve¥) \/F—( = C*[y] (VEFDyI - Ver + \/c_o)2 - co)

(1= 5o ) (¥ - va) o

as desired. So we indeed have Eg,, [wa(y)]—co < Ep+ [wa2(y)] —c¢* = Ep [w2(y)], implying that agent 2 would
choose (F’,0) in response to wy.
This leaves the principal with a payoff of

Ep [y =wa2(y)] = ABp: [(1 = 52) y] = ( < (1 — 4/ E:[y]) -Ep[y]

=( Ep- [y] - \/F)2

as desired.

This completes the proof. o
We are now ready to prove Lemma 3’.

Proof of Lemma 3’. Combining Lemmas B.1 and B.2, we have shown that by offering the best of the two
contracts: (i) wo (y) = wi (y) + m - (y — wy (y)) with m defined by equation (B.3), and (ii) wy (y) = sy
with s, defined by equation (B.4), the principal’s payoff guarantee in the second period is exactly given by
(max {® (w1, a1),® (a1)})?. The principal’s optimal second-period payoff guarantee, V3 (wy,ay), is thus at
least (max {© (wy,a;), ® (a)})?.

Now consider an arbitrary second-period contract w,. It suffices to show that the principal’s payoff
guarantee is not strictly higher than (max {® (wy,a;), ® (al)})2 under wy.

Let ag = (Fo, co) be the action agent 2 will choose if the true technology is exactly Ag U {a;}. Consider
the following three cases.

Casel. Ep, [w2()] < co.
Consider the second-period contract wy when A = Ay U {ay, (09, 0)}, which is compatible with (wy, a;).
Agent 2’s payoff from (dg, 0) is
w2(0) > 0 > Ep, [w2(y)] = co,

so he would prefer to take action (dg, 0). This leaves the principal with a payoff of
~w(0) <0 < (@),

as desired.
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Case 2. Ep, [w2(y)] = co, and it holds that

either (i) Ep, [w1(0)] < Ep, [w1 ()] - c1,
Ero [w1()] . (B.8)
Er, Wi0)] = Er, w1 D] —¢1)

Let A = 1—co/Ep, [w2 ()] € [0, 1] and let F’ be the mixture AF + (1 — 2)dp. Consider the technology
A = Ay U{ay, (F’,0)}. We proceed with two steps.

or (i) Eg, [wa(y)] <

Step 1 A is compatible with (wy, a;). That is, agent 1 chooses a; in response to wy.
Agent 1’s payoft from (F’,0) is

E
Ep [Wl(y)] — /UEFO [Wl(y)] = EFO [Wl (y)] - %CO

<Ep, [wi @] -c1. (B.9)

Note that inequality (B.9) holds exactly due to the assumptions in (B.8). So agent 1 would prefer to take
action a; = (Fj,c1) when A = Ag U {ay, (F’,0)}.

Step 2 Agent 2 chooses (F’,0) in response to ws, resulting in the principal’s payoff no more than @ (a;)>.
Agent 2’s payoff from (F’,0) is

Ep [wa(3)] = ABg, [wa()] + (1 = Hw2(0)
> AEF, [w2(y)] = Ef, [w2(»)] = co.

So he would prefer to take action (F’,0) when A = Ag U {a;, (F’,0)}.
This leaves the principal with a payoff of

Br [y~ w2 0] = Ar, [y~ w2 0] + (1= DO = w2 (0)
— _ o —
<81, =20 = (1 = s B ] Br b2 )
< (VBRI - Vo) (B.10)

which is no more than @ (al)z, as desired. The last inequality (B.10),

(1 - EI«“O[iV—Oz()’)]) (Er, [y] = Ery [w2 )]) < (\/EFOD’] - \/%)2

2
E
[\/EF() [w2 )] - ECFO :VOZ ) ] >0

which always holds.

Case 3. Both inequalities in (B.8) are reversed, i.e.,

EF() [Wl(y)] C
Ery (W10)] - Br, (w1 )] —€1)

Er, [wi)] > Ep, [w1 ] —c1 and  Epg, [wa (»)] 2
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Let

1= (Er, [w2 O] = co) = (Ep, [w1 ] —c1)

Er, [wa 0] = Er, [w1 )] ’
o En (w1 W] (EF, [w2 )] = co) = Er, [w2 0] (Er, [w1 ()] = c1)
Ery [w2 0] = Er, [w1 ()] ’

and let F” be the mixture AFy + (1 — 1)8g. Consider the technology A = Ay U {ay, (F’,¢’)}. We proceed with
three steps.

Stepl A€[0,1]and ¢’ >0, so (F’,¢’) is a valid action.
Note that
EFo [WI(Y)] cn > EFO [Wl(y)] c
Er, i) = Er, w1 O] =)~ Er, (w10)] = Er, [w1 0] = o)

so the denominator of A and ¢’ is positive.
Moreover,

Er, [w2 ()] > =Efr, [w1(»)],

Ep, [w1 )] — 1 .

Ery [W10)] - Br, (w1 )] — 1)
]
[

EF() [W2 ()’)] —Co >

Er, [w1 O] —ci
> (o))
Er, [W1)] = (Er, [w1 )] = o)

= Ep, [Wl ()7)] —C1,

so the numerator of A is positive.
The numerator of ¢’ is positive because

Ery [w1 O] (Er, [w2 0] = co) = Er, [w2 W] (Er, [wi ()] = 1)

EFO [WI(Y)]
& Ep [w2(] 2 Er, [wi0)] = EF, [w1 3)] - 61)60.

Finally,

(Ery [w2 )] = co) = (BF, [w1 )] = c1) < Egy [wa )] = EF, [w1 ()]
o  Epr [wi 0] = co <Ep, [w1 ()] = c1,

so A 1s indeed smaller than 1.

Step 2 A is compatible with (wy, a;). That is, agent 1 chooses a; in response to w.
Agent 1’s payoff from (F’,¢’) is

Ep [wi)] = ¢’ = ABp, [wi1()] = ¢" = EF, [w1 )] = c1,

so he would prefer to take action a; = (F,c;) when A = Ag U {ay, (F’, ¢")}.

Step3 Agent 2 chooses (F”, ¢’) in response to w», resulting in the principal’s payoff no more than © (w1, a;)>.

53



Agent 2’s payoft from (F’,c’) is

Er [wa(0)] = ¢’ = AEp, [w2()] + (1 = Yw2(0) = ¢’
> AEr, [w2(0)] = ¢ = B, [w2(y)] = co.

So he would prefer to take action (F”,¢") when A = Ag U {ay, (F’, c’)}.
This leaves the principal with a payoff of

Ep [y =w2 ()] = AEp, [y = w2 ()] + (1 = 2) (0 = w2 (0))
_ (Bry [w2a )] = co) = (Ef, [w1 ()] —c1)

< By, [y =z ()] = I e S (B ] = By [ 0))

2
< (\/EFO [y - w1 )] - «/g(ao|wl,a1>) , (B.11)

which is no more than @ (wy, al)z, as desired. The last inequality (B.11),
(Er, [w2 ()] = co) = (EF, [w1 )] - 1) \/— g
o B oy B D1 =B b 0] < (VEr Ly = w1 0] = Ve Gaow,an)
(EF() [w2 0] = Er, [wi 0] = VEr, [y = w1 0] - Vg (aolwl,al))2

g >0,

Ery [w2 ] = Er, [w1 O]
which always holds. (Recall that g (aplw1,a1) = (Er, [w1 )] — c1) = (Er, [Ww1 ()] — o) = 0.)

Summing up the above three cases, we prove that the principal’s payoff guarantee is not strictly higher
than (max {® (w;,ay),® (a 1)})2 under any second-period contract w.
This completes the proof. m]

B.3.1 Proofs for Subsection B.2

To prove Lemma A.4’, we start by establishing the following Lemma B.3.

Lemma B.3. Suppose the known technology Aq satisfies lower bound on marginal cost. If ©® (wi,a;) >
® (ay) and a* = (F*,c*) € Ag attains the maximum in equation (B.1), then (i) ¢* < co, (ii) Ep- [y] < Ef, [y],
and (iii) Bp+ (w1 ()] < Ep- [W1 )] = 1B+ [y], where W, is defined by equation (3).

Proof of Lemma B.3. Let go = g(aolwi,a1) = (Ep, [w1 (] —c1) — (Br, [Ww1 ()] —co) = 0, and g* =
g (@*lwi,a1) = (Bp, [w1 )] —c1) — (Bp+ [w1 ()] — ¢*) = 0. By assumption, we have

Er, (w1 ] =co2Ep-[wiM]-¢c" = g 2go.

Note that

VEr [y = w1 )] = V&&= O (wi.a1) = /Er, [y — w1 )] - vzo. (B.12)

We first argue that ¢* < cp must hold, otherwise there will be a contradiction to the assumption that Ag
satisfies lower bound on marginal cost.
Suppose not, i.e., ¢* > ¢o. Consider the following two cases.

Casel. +/Ep,[y—wi (] = vzgo.
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From equation (B.12) we obtain

(Er- [y =wi O] = Ery [y —w1 O]
VEr [y = w1 O] + VER [y — w1 ()]

= \/EF* [y -wi (y)] - \/EFO [y - w1 ()7)]

(Er, [wi1 )] = co) = (Bp+ [w1 ] = ¢”)
Vg* + 8o .

Since Ep- [y —wi ()] > Vg* and \Ef, [y — wi ()] > +/g0, the above expression implies that

Er [y =wi1 O] = Er, [y = w1 O] > Er, [wi1 O] = co) = (Er< [w1 )] = ¢*)
= Ep[y] - Epg [y] > —co>0,

a contradiction to the assumption that Ag satisfies lower bound on marginal cost!

Case2. +Epr,[y—wi ()] < vgo.
We have

Ery [y = w1 ] < g0 = Er, [wi O] = c1) = EBr w1 ] =co) = Ep, [y] = co <Ep, [wi ()] = c1.
Similarly, from ® (wy,a;) = ® (a;) > 0, we have \Ep+ [y —wi ()] = Vg* > 0, and thus
Ep [y —=w1 W] > g" = (Er, [wi W] —c1) = Ep [wi W] =¢") = Ep[y]=c" >Ep [wi ] -c1.

It follows that
Er[y] = ¢ >Er [yl —co = Ep[y]-Er[y] > —co>0,

another contradiction to the assumption that Ay satisfies lower bound on marginal cost!

Summing up the above two cases, we show that ¢* < c¢p. It follows from lower bound on marginal cost
that Ep- [y] < Ef, [y].
Moreover, Eg, [wi ()] — co = Ep+ [w1 (y)] — ¢* implies that

Er, Wi D] =Ep-[wiM]2co—-c"20 = Ep, [wi ] =Ep [w1 O)].

Equation (B.12) implies that

\/EF*[y—Wl()’)]—\/EFo[y—Wl()’)]Z\/E—\/g_OZO = Eply-wi O] 2Egr[y-wiO].

Combining the above two inequalities, we have

Ep [y — w1 0] S Er, [y = w1 )]

Er-[wi ]~ Egy [w1 )]
Ep- E 1
F [Y] > Fo [y] _ - (B.13)
Ep [wi ] ~ Ep, [w1 ] 1
= Ep [w1 O] < s1Ep [y],
as desired. The equality in (B.13) follows from the definition in (3). O

Proof of Lemma A.4’. Consider an arbitrary action a; = (F, c1) agent 1 would take under contract w;. We
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need to show that the principal’s interim payoff guarantee, U (W1la;), is at least U (w;). Lemma 3’ shows
that the principal’s optimal second-period payoft guarantee is

V3 (bi,a)) = (max {© (W1, a1), @ (a1)})’,

where

OGn.an = max {\fBr,[y= i1 0] - z@ina},

acAgU{ar}
®(a;)= max {\Er - Vedf,
acAgU{ar}

and her interim payoff guarantee is
U (lar) = Ep, [y = wi)] + 8- V; b, an).

It suffices to construct another action aj, which may be taken by agent 1 under w; and some other
technology, such that U (w1|a’1) < U (Wilay). By assumption, ag is agent 1’s best response if A = Ao, so an
action a| may be taken by agent 1 under wy if and only if the incentive gap with respect to ay is nonnegative,
ie., g (a0|w1 s a’l) > 0. Consider the following two cases.

Casel. Ep, [y] = Ep, [y]

Let a} = ap. When agent 1 takes action ag in response to wy, the principal’s resulting payoff in the first
period is

EF() [y - WI(Y)] = (1 - sl)EFo [)’] < (1 - sl)EF1 [y] = EF] [y - Wl(y)] 5

so her payoff in the first period under (wy|ag) is weakly lower than under (Wy|ay).

Moreover, it follows from Lemma 3’ that the principal’s optimal second-period payoff guarantee is

V3 (w1, ag) = (max {® (w1, ag) , © (@)} .

‘We now show that \7; (wy,ap) < V; (W1,a1), which is equivalent to

max {® (w1, ap) , P (ap)} < max {® (wi,ay),® (ar)}.

Note that

O (wi,ap) = max { VEF [y —wi O] - Vg (alwl,ao)} ,

® (a0) = max { VE£, ] - Vea].

By definition we have 0 < @ (ag) < @ (a;). Thus, it suffices to show that whenever ® (wy,ag) > ® (ap), it
holds that ® (wy, ag) < ® (Wi, ay).

Let a* = (F*,c*) € Ap attains the maximum in ® (w1, ap). It follows from Lemma B.3 that Ep- [y] <
EFO [y] < EF] [y] and EF* [Wl (Y)] < SIEF* [y]

We claim that

© (wi,a0) = \JEp [y = w1 ()] = Vg (@wi,a0) < Bp, [y = W1 ()] < O (1, a1).



must hold. Suppose not, then

VEF [y = w1 O] = Vg (@wi,a0) > EF, [y = W1 O],

which implies that

VU =D Br [3] 2 \Er [y = w1 0)] = Vg @lwiao) > \Er, [y =i 0)] = (1 = 51 Er, [y

a contradiction to Ep- [y] < Ef, [y]!
Therefore, whenever ® (w1, ag) > ® (ap), it holds that ® (wy, ag) < ® (W1, a;) , which implies V; (wi,a9) <
V; (W1, ap). The principal’s interim payoff guarantee is

U (wilag) = Er, [y = wi)] + B+ V5 (w1, ao)
<Er [y= W]+ 8- V; b1, a1) = U Giila),

as desired.

Case 2. Ep, [y] <Ep, [y]
Let A = Efr, [y]/EF,[y] € [0, 1] and let F| be the mixture AFy + (1 — 2) 6. Note that Er [v] = Er, [y].

Consider a} = (F 1-c ) For any action a, the corresponding incentive gap with respect to a is
g(apwi,a}) = (B, w1 0] - 1) = Br, [w1 0)] - ca) -
Note that
Ep; [wi ] =1 = ABp, [wi 0] = ¢1 = As1EF, [y] = ¢1 = 1Br, [y] = c1 = Ep, (11 O] = c1,

and
Er, [Ww1 )] = co = s1EF, [y] = co = Er, [W1 ()] = co.

Thus,
g (aolwr. a}) = (Bp; w1 )] = c1) = Br, [w1 0)] - o)
= (Er, D1 W] = c1) = Er, (1 0] = co)

= g(aolw1,a1) >0,

implying that ] may be chosen by agent 1 in response to w; under some technology.
When agent 1 chooses action &) in response, the principal’s resulting payoff in the first period is

Er [y = wi)] = ABp, [y - wi(] = A1 = s Ep, [y] = (1 = s) Ep, [y] = EF, [y - 41O,

so her payoff in the first period under (w1 |a’1) and under (W1|a;) are exactly equal.
Moreover, it follows from Lemma 3 that the principal’s optimal second-period payoff guarantee under

(w1 |a’1) is

3 (1.1) = (max (. ) 0 o)
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We now show that \A/; (wl, a’l) < A; (v?/l, a’l), which is equivalent to

max {0 (wi,d} ), ® (a})} < max{® (wy,a1), @ (ar)}.

Note that

G)(wl,a']): max {\/]EF y—wi ()] - \/g a|w1, },

aeAOU
q)(a ) = aezr:gx {\/EFQ \/c_a}

From Ep [v] = Ep,[yl, it follows that d)( ) = ®(a;) > 0. Thus, it suffices to show that whenever
®(w1, ) ( ) 1tholdsthat®(w1 a )<®(w1,a1)
Leta* = (F*,c*) € Apg U { } attains the maximum in ® (wl, ])

1. If a* = af, then

Wl, = JEr [y-wi O] - \/ |W1,
= \Er, [y = w1 ] = Vg (aii,ar) <O Gy, ar),

as desired.

2. If a* € Ay, then it follows from Lemma B.3 that Egp- [wy ()] < Ep- [ (y)]
From@(wl,a’l) > (D(a’) > 0, we have@(wl, ) VEF [y = w1 )] -

Ep- [y —wi 0] > g (a'|wi ;) = (Br; [wi 0] = ¢1) = B [wi )] = ¢)
= Ep [y] =" >Ep [wi W] - c1 =Ep, [0 ()] -
= Ep [y -1 O] > Er 21 ] - 1) = EBp [0 0] = ¢*) = g (@1, a1).

> 0, and thus

We claim that

@ Wl,al \/EF* [y-wi]- \/8

must hold. Suppose not, then

JEr Iy - w1 9] - g (@
& \Br w0~ B b - 0] < (g (@ wiq]
Er [y = wi )] = Er [y = 01 )] g(awi.q;

VEr [y =wi W] + VEr [y — w1 ()] \/g 1)+ Vg(a |Wl,al).

) < \Er [y~ 1 0)] — Ve @hinan < © ().

\/EF [y = w1 ] - Vg @hvi,ar)

|-

)= Ve @iy ar)
) - g (@, ar)
@)

w1, da

(B.14)

Note that

Er [y =wi O] =Ep [y = W1 O] = Ep [W1 O] = Ep [w1 ()] 20
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and that

g (a*lwl, a'l) -g (a*|\2/1, ai)
= ((Br; w1 0] = 1) = B [w1 ] =€) = (Br, [ 0] = 1) = B [ ()] =€)
=Ep [W1 0] = Ep- [w1 ()] 2 0.

Therefore, inequality (B.14) is equivalent to

Ep- (01 0] = Ep- [wi O] < _Ep [ O] -Ep w1 O]
VEr Ly =wi O+ VEr D=0 e (a|wiap) + Ve @horan

which is implied by Eg- [y —w; ()] > g (a* w1, a;) and Eg- [y — Wy ()] > g (@*|W1, ay).

Therefore, whenever ® (wl, a’l) > (a’l), it holds that ® (wl, a’l) <0 (Wl, a’l) , which implies V; (wl, a’l) <

\7; (W1,ay). The principal’s interim payoff guarantee is

’
(Wl ’ al)

O, a1) = U (Wlay),

0 (wila}) = Bpr [y = wip)] +8- V3
<Ep [y-wi]+8-V;
as desired.

This completes the proof. o

Proof of Lemma A.5’. We first reformulate program (B.5) as an equivalent maximization problem with con-
tinuous objective function and compact feasible region. Slightly abusing notation, we use U (s1) instead of
U (w)) to denote the infimum value of program (B.5).

Plug w; (y) = s1y into equation (B.1). We may rewrite ® (w1, a;) as

OGwa)= max {\(1-s)Er, ]~ Valawian).

Similarly, for a € Ag U {a;},

g(alwy,ar) = (s1Ef,[y] — c1) = (s1EF,[y] = c4) 2 0.

Note that both the objective and the constraints of program (B.5) depend on the choice variables (F, c1)
only through the value of (Ep, [y],c1). Rewrite Ep, [y] = x and ¢; = z with x,z > 0. Plugging into the
original program (B.5), we obtain an equivalent program

0(s1) =inf (1 -s1)x+ 8 max{6(x,z; s1),¢(x,z)}2

(B.15)
st. six—z> max {siBp, [y] -}, X220,
aeAgU{(60,0)}

where

6.2 51) = max{«/(l —sox max{ (1= 0B, ] = yis1x=2) = (s1Er, ] —ca)}}, (B.16)

and ¢ is defined by equation (A.2).
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Let X = maxgea, Er,[y] > 0, and v = maxgeqa, { vVEF,[y] - \/a} > 0. Suppose

(Fo,co) € argmax {s1Ef, [y] —ca}.
agAgU{(60,0)}

Note that (xo, z0) = (Er, [y], co) is feasible in program (B.15) and leads to objective value

(1= 51) % + - max 0. (x0,20: 51),6 (0, 200 < (1 = s) % + 8- max | V(I = sD % 7] .
If x > (1 +B)x, then

(1-s)x+p-max{(x,z5),¢ (P > (A -s) (L +BX+B-
=(1=s)Xx+B0=s)x+B-V

2
> (1-s1)+B-max{(I-s)X.¥] .
Therefore, restricting x € [0, (1 + ) X] will not change the infimum of program (B.15). Moreover,
s1x—z20 = z<s1x<x,

so restricting (x, z) € [0, (1 +8)%]* will not change the infimum of program (B.15).
Consider the following program

¥ (s =sup ¥ zs)= —((1 = sp)x+B-max{f(x,z; sl),¢(x,z)}2)
x.2 (B.17)
st (x,2) € T(sy),

where 6 is defined by equation (B.16), ¢ is defined by equation (A.2), and I" is defined as follows:

f(sl) = {(x, 7) € [O, 1+p )_c]z IS X—=z2= aeAgB{gth(o,O)} {SIEF,, [y] - Ca}} .

By definition, ¥ : [0,(1 + ) E]z x [0,1] — R is a continuous function, and I" : [0,1] =3 [0,(1 + ) %]2 isa
compact-valued and nonempty-valued correspondence. Moreover, the infimum of program (B.15), U (s1),
is given by —¥* (s).

Note that for each sy, I'(s;) defines a half plane intersecting a square, and that the half plane shifts
linearly in s;. Thus, I is both upper and lower hemicontinuous. It then follows from Berge’s maximum
theorem that ¥* is continuous, and

P ={a el : ¥xzs) =9 ()

is upper hemicontinuous with nonempty and compact values. As a consequence, a solution to program
(B.17) exists for all 51, and the supremum can be replaced by maximum.

It follows that the infimum in program (B.15) and therefore the original program (B.5) can both be
replaced by minimum, and the resulting minimum value U(sy) = — (s1) is continuous in s;. Hence, U (s1)
achieves a maximum over [0, 1]. This maximum is also the optimal guarantee over all linear contracts. O

Proof of Theorem 2’. According to Lemma A.5’, among all linear first-period contracts, there exists an op-
timal one, call it w}. If wy is any other (nonlinear) first-period contract that outperforms wy, then by Lemma
A4, there is a linear contract that in turn does at least as well as wy. But this contradicts the fact that wi is
an optimal linear contract. Therefore, w} is optimal among all first-period contracts. O
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Appendix C Optimal First-period Contract

In this appendix, we examine the structure of the optimal linear first-period contract in our dynamic model,
and compare it with the optimal static contract identified by Carroll (2015). This requires an exact calcu-
lation of the overall payoff guarantee from an arbitrary linear first-period contract, which becomes com-
plicated when the principal knows a general set Ay of available actions. In particular, in response to a
linear first-period contract w(y) = s1y, the optimal payoff that agent 1 can obtain from known actions,
maxgeq, {S1EF, [y] — ¢4}, changes with respect to s; in an intractable manner. This payoff, however, is a key
component of the constraint in the programs that characterize the principal’s overall payoft guarantee. For
this reason, we focus on the case where the principal knows only one action ag = (Fy, cg) available.

We demonstrate that the principal’s second-period payoff guarantee takes a simpler form in the case of
advancing technology (equation (2)). It turns out that the principal’s overall payoft guarantee is also easier
to characterize in this situation. In the proof of Theorem 1, we set up a program (5) that characterizes the
principal’s overall payoff guarantee from any linear first-period contract. We explicitly solve the program
(5) for any first-period share sy, and the resulting overall payoff guarantee U is depicted in Figure 2. From
this calculation, we can show that the optimal first-period share 57 exists and is unique. Moreover, in Figure
2, the optimal first-period share is greater than so = +/co/Er,[y], the optimal static share in Carroll (2015).

Principal's overall payoff guarantee, U
A ‘

B(NErR D1 - Ve )

First—period share, s

Figure 2: Overall payoff guarantee in the case of advancing technology (so = 0.4, 8 = 0.8).

Proposition C.1 formally establishes this observation and exactly characterizes the optimal first-period
share. It reveals an exploration effect where the optimal first-period share offered to agent 1 is always larger
than the optimal static share so. Moreover, the exploration effect increases as the principal becomes more
patient (8 increases), provided that 8 < 1. When S > 1, it starts to decrease, and vanishes as 8 — co.

Proposition C.1. Suppose the principal knows only one available action ay = (Fy,cg), and let sy =
vco/EFr,[y] denote the optimal static share. In the case of advancing technology, the optimal first-period

share s| is unique, and satisfies the following properties:
1. For all B € (0, o), the optimal first-period share is larger than the optimal static share, i.e., s| > So.

2. In both limiting cases p — 0 and f — oo, 5| approaches s.
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3. ] is strictly increasing in B if B < 1, and is strictly decreasing if B > 1.
Proof of Proposition C.1. Available upon request. O
The pattern identified by Proposition C.1 is illustrated in Figure 3. It is straightforward to understand

Optimal first—period share, s}

= Normalized discount factor, 8/(1 + )

Figure 3: The optimal first-period share s in the case of advancing technology (so = 0.4).

the result that the dynamic model converges to the static model as the discount factor S approaches 0. To
get intuition behind the opposite case, that is, when 8 approaches infinity, the optimal first-period share s}
approaches the optimal static share sy again, note that unlike in standard models where patience automati-
cally leads to the option value of exploration, here the principal is concerned with the worst-case discovery.
In the limiting case § — oo where only the second period matters, there is no incentive for her to raise
the first-period share s; from sg, precisely because the worst-case technology always leaves the principal
without any valuable discovery. The principal is thus essentially indifferent among any first-period contract
in this limiting case, making the opportunity to explore in the first period completely useless to her.

In the case of constant technology, the principal adopts a more complex rule of updating (i.e., com-
patibility). Under all possible parameters choices, we aim to compute the exact solution to the analo-
gous program (A.11), which characterizes the overall payoff guarantee of any linear first-period contract
wi (y) = s1y. Current results show that, for a range of parameter values (specifically, 8 not too large), the
resulting worst-case payoff guarantee U is a bell-shaped curve as depicted in Figure 4. From this figure, the
optimal first-period share appears to be unique, and smaller than the optimal static share sq.

Now we explain why the principal chooses to lower the share offered to agent 1 compared to the optimal
static share in Carroll (2015). Note that this result is different from the previous case of advancing technol-
ogy due to the distinct rule of updating, thus resulting in a different optimal second-period payoft guarantee
(equation (6)). Within the parameter values we tried, the true worst-case technology A is such that, after
offering first-period contract w; and observing agent 1’s selected action aj, the principal optimally selects
the second response among the four candidates of optimal second-period contracts, namely, a modified w,
with compensation to agent 2. Based on this observation, it won’t be worst-case optimal for the principal
to offer a strictly higher share compared to the optimal static share in the first period, in anticipation of an
even higher share in the subsequent period. Instead, the principal benefits from reducing the share in the
first period to hedge against the risk of increasing the share in the second period.

We hope to finish the subsequent calculations to formally confirm this observation, in order to better
understand the exploration effect in the case of constant technology. In particular, we are interested in
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Principal's overall payoff guarantee, U
A

B(\Er ] - o |

First—period share, s;

Figure 4: Overall payoff guarantee in the case of constant technology (so = 0.4, 8 = 0.8).

whether the optimal first-period share s} approaches the optimal static share so again as the discount factor
B approaches infinity.
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